
ActionScript 3.0 Language Specification

This document defines the ActionScript 3.0 language, which is designed to be forward- compatible
with the next edition of ECMAScript (ECMA-262).

This document is complete in the syntax and high-level semantics of the language, but lacks details
regarding features that have not changed from the ECMA-262 edition 3 specification, compatibility
with ActionScript 2.0, and low-level semantics of some new features.

1 Tutorial introduction

An ActionScript program consists of zero or more package definitions followed by zero or more
directives, which includes non-package definitions and statements. Statements inside and outside
of package definitions are evaluated in order, independent of their nesting inside a package.

1.1 Hello world

The following sections show various ways to implement simple programs such as the familiar 'hello,
world' program in ActionScript 3.0:

trace("hello, world");

This is a single expression statement that calls a function named trace() with the argument that is
a literal string "hello, world". An expression statement does nothing but execute an expression.

1.2 Expressions

Here are some examples of expressions:

x = 1 + 2
x = y()
x = y..z
x = o.ns::id

Expressions evaluate to values:

1+2 evaluates to 3.

y() evaluates to the result of calling the function y with no arguments.

y..z evaluates to the set of all properties identified by z in the value of y and the descendants
of y. The descendants accessor operator (..) is part of the ActionScript 3.0 implementation of
ECMAScript for XML (E4X).

o.ns::id evaluates to the value of the property ns::id of the value of o, where o represents
an object, ns represents a namespace, and id represents an identifier.

1.3 Statements

Statements are executed in the order that they appear in a block. Some statements change control
flow by abrupt completion, such as break and continue, or by iteration, such as while and do. An
example of a statement follows:

for (var i:int = 0; i < 5; i++) {
 trace(i);
}

1.4 Variables

Variables define properties whose values can change at runtime. They can be defined with either the
var keyword or the const keyword. A variable that is defined with the var keyword may be
assigned by any code that can access it. A variable that is defined with the const keyword may
only be set by its initializer, or its class's instance constructor if it is an instance variable. An
example of variables follows:

var x = 10
const PI = 3.1415

1.5 Functions

Functions define properties whose values can be called. An example of a function follows:

function hello() {
 trace("hello, world")
}
hello()

Depending on where a function is defined, it results in a property whose value is a function closure
or a method. A function closure is a first class object that can be treated as a collection of
properties or a callable object. A method is tightly bound to the object that it is associated with. The
this reference of a function is bound to the base object of the call expression, or the global object if
none is specified.

function hello() {
 trace("hello, world")
 trace(this) // this refers to global object
}
hello()

A method is a function that is tightly bound to an object. A method can be extracted from its
instance, but, unlike function closures, the value of this always refers to the instance it is extracted
from.

1.6 Classes

A class is an object that can be used as a constructor of instances that share the same type and
properties. An example of a class follows:

class Greeter {
 var saying = "hello, world"
 function hello() {
 trace(saying)
 }

}
var greeter : Greeter = new Greeter
greeter.hello()

Class definitions are used to define the fixed properties of a class object. Property definitions that
are marked with the static attribute become properties of the class object, and those that are not
become properties of instances of the class.

Class and instance properties are either methods or slots. A method is defined by a function
definition inside a class definition. A method has a definition (called a method trait) that is shared
among all instances of the same type. Unlike an ordinary function object, a method is tightly bound
to the object it is associated with. Whenever and however it gets invoked, the meaning of the
expression this is always the same. In fact, methods can be extracted from their instance and
treated as first class objects (called bound methods), much like function objects can be. There is
one important difference between a function closure and a bound method. With a bound method,
the this reference is bound into the object so that whenever it is invoked the original this
reference is used. With a function closure, this is generic and refers to any object the function
happens to be associated with when it is invoked.

Slots are defined by variable definitions inside a class definition. An instance variable has a
definition (called a slot trait) that is shared among all instances of the same type, but a unique
location in each object.

1.7 Interfaces

An interface defines a contract between an instance and code that uses that instance. When a class
implements an interface, it guarantees that it will provide the methods declared in that interface. An
implementing method must be declared public, in which case it will implement all unimplemented
interface methods with the same identifier. An example of an interface follows:

interface Greetings {
 function hello()
 function goodmorning()
}

class Greeter implements Greetings {
 public function hello() {
 trace("hello, world")
 }
 public function goodmorning() {
 trace("goodmorning, world")
 }
}
var greeter : Greetings = new Greeter()
greeter.hello()

1.8 Packages

Packages in ActionScript are very similar to packages in Java and namespaces in C# and C++.
Packages are useful for organizing frameworks (or toolkits, or APIs) into sets of related definitions:
classes, namespaces, interfaces, functions, and variables.

Client code can import all or parts of a package to access the functionality it provides without
cluttering its global namespace with unneeded names. In the following example, the import
directive makes the class Greeter visible to the global code that contains the import directive.

package actors {
 public class Greeter {
 public function hello() {
 trace("hello, world")
 }
 }
}
import actors.Greeter
var greeter : Greeter = new Greeter
greeter.hello()

1.9 Namespaces

Namespaces are useful for controlling the visibility of a set of properties independent of the major
structure of the program. Packages, classes and interfaces, along with their implicitly defined
access control namespaces, allow authors to control the visibility of names in parallel with the
organization of those packages, classes and interfaces. But it is sometimes necessary to control the
names independent of the lexical structure of a program. Examples of this include the following:

Making the public interface of a set of classes look different to different client modules

Evolving a class over time without changing the behavior of existing programs

Providing privileged access to a limited set of clients

Use packages to give or gain access to a set of features. Use namespaces to give or gain access to
a particular facet, version, or privilege independent of the structure of a program. An example that
uses namespaces follows:

// ActionScript file: actors/English.as
package actors{
 public namespace English = "http://www.adobe.com/2007/Examples/English";
}

// ActionScript file: actors/French.as
package actors {
 public namespace French = "http://www.adobe.com/2007/Examples/French";
}

// ActionScript file: actors/BilingualGreeter.as
package actors {
 public class BilingualGreeter {
 English function hello():void {
 trace("hello, world");
 }
 French function hello():void {
 trace("bonjour, le monde");
 }
 }
}

// ActionScript file: Test.as
package {
 import flash.display.Sprite;

 public class Test extends Sprite
 {
 public function Test()

 {
 }
 }
}

import actors.*;
var greeter : BilingualGreeter = new BilingualGreeter();
use namespace English; // Make all identifiers in the English namespace
 // visible
greeter.hello(); // Invoke the English version
greeter.French::hello(); // Invoke the French version

2 Design perspective

It is sometimes difficult to understand design decisions without understanding the perspective of
the designers. Here are the major viewpoints that have grounded the design changes introduced in
ActionScript 3.0 and ECMA-262 edition 4.

2.1 Compatibility with existing programs

ECMAScript was originally designed for and used by consumers of host object models. Because
ECMAScript is one of the most widely used programming languages, it is important that existing
ECMAScript-compliant programs continue to work in systems that are updated to support the new
definition of the language.

Therefore, programs written for ECMA-262 edition 3, compact profile, or ECMAScript for XML
(ECMA-357 edition 2, also known as E4X) must continue to behave the same way in both
ActionScript 3.0 and ECMA-262 edition 4.

2.2 Compatibility with existing object models

Through 10 years of use, ECMAScript has come under great pressure to become a language for
creating object models. This is a natural consequence of the need for application and tool
developers to extend and override the functionality of the built-in objects provided by host
environments. A few examples of this include HTML, Flash, Acrobat, and VoiceXML.

These embeddings contain host objects with behaviors that can only be approximated with the
features of ECMA-262 edition 3, and as such are implemented in a way that is inefficient and
fragile.

Therefore, one of the mandates of edition 4 is to make it possible to create object models, such as
the ECMA-262 edition 3 built-ins, HTML DOM and ActionScript API, in a way that not only makes it
natural to give these object models behavior like the existing object models, but that also makes
them robust and efficient.

2.3 Controlling the visibility of names

It is a well-known problem that naming conflicts arise when independently created libraries are used
by a single application. It is also common that the meaning of a name must be different for different
uses of a single component.

Therefore, edition 4 strives to minimize the occurrence of naming conflicts when independently
created libraries are used by a single application and make it possible to resolve those conflicts

created libraries are used by a single application and make it possible to resolve those conflicts
when they do occur. Furthermore, edition 4 strives to make it possible for users to select the
meaning of names between versions and uses.

2.4 Choosing between reliability and flexibility

Whereas the original purpose of ECMAScript was to provide a scripting language for automating web
pages and other hosted applications where lenient runtime behavior is preferred and scripts are
small enough that performance is often not a concern, libraries written in ECMAScript can be very
large and complex, and be constrained by aggressive performance requirements. These libraries are
often created ahead of time using IDEs and stand-alone compilers. In this case, developers are
willing to give up some flexibility to be guaranteed that certain kinds of errors will not occur at
runtime, and that their code will run as efficiently as possible.

Also, it is desirable when targeting low-powered platforms to minimize the amount of processing
that must occur to execute programs on the client.

Therefore, edition 4 allows developers to trade flexibility and compatibility for reliability and
efficiency by choosing a well-defined subset of ECMAScript that can be compiled ahead-of-time for
more aggressive compile-time semantic analysis and optimization.

3 Phases and dialects of interpretation

There are three phases of execution: parsing, verification and evaluation. Invalid programs will
terminate during one of these three phases, before the program runs to completion.

There are two dialects of the language described by this specification, one a subset of the other.
These languages differ only in that one has additional verification rules. The more permissive
language is called the standard dialect, and the more restrictive language is called the strict dialect.

3.1 Parsing

The parsing phase translates the source code of a program into an internal format suitable for
verification. The syntax rules of the language are described using grammar productions throughout
this specification.

3.2 Verifying

The verification phase ensures that the program obeys the static semantics of the language. In the
standard dialect, verification may be done anytime before a construct is first evaluated. In the strict
dialect, verification must happen before any part of the program is evaluated.

The differences in the verification rules of the standard dialect and the strict dialect mean that some
programs that would verify in the standard language will not verify in the strict language. However,
all programs that verify in the strict language will verify and run with the same behavior in the
standard language.

3.2.1 Compile time constant expressions

A compile time constant expression is an expression whose value can be determined at compile
time (during verification), before any part of the program has been executed. Compile time
constant expressions consist of the following sub-expressions:

Literals such as null, Number, Boolean and String literals

References to properties whose values are compile-time constants

Operators whose results can be computed at compile time

Expressions in certain contexts are required to be compile time constant expressions:

Type annotations

Inheritance clauses references

Attributes

Pragma arguments (for example, use namespace ns2)

Of these, inheritance clause references and attributes must not have forward references.

3.3 Evaluating

The evaluation phase takes the parsed, verified program and evaluates it to produce side effects in
its host environment and a final value. The semantics of evaluation are the same for both dialects
of the language.

3.4 Strict verification

The goal of strict mode is reliability of new programs. The strict language is a subset of the standard
language and has three kinds of constraints:

Expressions have static types and type errors are verification errors

Common programming errors are caught by additional verification rules

Verification errors are reported ahead-of-time

3.4.1 Type errors

Here is an example of a program that is valid in the standard dialect but not valid in the strict
dialect:

class A {}
class B extends A {}
var a : A = new B
var b : B = a // type error, static type of 'a' is A,
 // which is incompatible with B

In the standard dialect this program has no error, since type errors are runtime errors and the
runtime value of a is an instance of B, which is clearly a member of the type B.

3.4.2 Strict errors

The strict dialect adds various semantic errors to catch common programming mistakes that are
allowed in the standard dialect for the sake of compatibility and flexibility.

Verification errors of strict mode fall into these categories:

Function call signature matching

Duplicate definition conflicts

Unbound references

Dynamic addition of properties on sealed objects

Writing to const variables

Deleting fixed properties

Comparison expressions with incompatible types

Unfound packages

4 Definitions

This section defines terms used elsewhere in this specification.

4.1 Bound method

A bound method is a method that is extracted from the instance to which it is attached. This
typically occurs when a method is passed as an argument to a function. Such a method is bound to
the original instance in that the this reference continues to refer to that instance.

4.2 Class

Every class definition is represented by a special class object that stores information about the
class. Among the constituents of the class object are two traits objects and a prototype object. One
traits object stores information about the static properties of the class. The other traits object
stores information about the instance properties of the class and serves as the primary mechanism
for class inheritance. The prototype object is a special object that can be used to share state among
all instances of a class.

4.3 Class method

A class method, also called a static method, is a method that is attached to an entire class, rather
than to an instance of a class. Class methods, unlike instance methods, can only be accessed
through the class, and cannot be accessed through a class instance.

4.4 Class variable

A class variable, also called a static variable, is a variable that is attached to a class object rather
than to an instance of the class. Class variables, unlike instance variables, can only be accessed
through the class, and cannot be accessed through a class instance.

4.5 Delegate

Delegates are objects that can substitute for other objects during property name lookup. Every
object has a delegate, which is either of the same type as that object or of type Object. An instance

object has a delegate, which is either of the same type as that object or of type Object. An instance
of a class is an example of an object that has a delegate of the same type. Class instances all share
the same delegate--the defining class's prototype object. A class's prototype object is a special
instance of that class that provides a mechanism for sharing state across all instances of a class.

At runtime, when a property is not found on a class instance, the delegate, which is the class
prototype object, is checked for that property. If the prototype object does not contain the property,
the process continues with the prototype object's delegate. A prototype object is an example of an
object that has a delegate of type Object. All class prototype objects share the same delegate--a
special static property of the Object class named Object.prototype.

4.6 Final

A class declared as final cannot be extended. A method declared as final cannot be overridden.

4.7 Function

A function is a callable object. A function can be either a function closure or a method, depending on
how the function is defined.

4.8 Function Closure

A function closure is a function that is neither attached to another object nor defined as part of a
class. Function closures are first-class objects that can be treated as a collection of properties or as
callable objects. Contrast function closures with methods, which are functions that are attached to
an object or an instance of a class.

4.9 Instance

An instance is an object that is created using a class definition.

4.10 Instance method

An instance method is a method defined without the static attribute. Instance methods attach to a
class instance instead of to the class as a whole.

4.11 Instance variable

An instance variable is a variable defined without the static attribute. Instance variables attach to
a class instance instead of to the class as a whole.

4.12 Method

A method is a function that is attached to an object or an instance of a class. Contrast with function
closures, which are functions not attached to an object or an instance of a class.

4.13 Object

Every value visible in a program is an object. An object is a collection of properties.

4.14 Property

A property associates a name with a value or method. A method can be either a get or set accessor
or an ordinary method. Fixed properties cannot be redefined or deleted. Dynamic properties are
created at runtime and can be redefined and deleted. Internally, fixed properties are expressed as
traits. Dynamic properties are expressed as a map between names and values.

4.15 Prototype

A prototype object is a special class instance that is stored internally by a class object. It is an
object that becomes the implicit delegate shared by all instances of a particular class or function. A
class prototype is an instance of that class, while the prototype's delegate is an instance of Object.

4.16 Sealed

An object is sealed if properties cannot be added to it at runtime. By default, class definitions create
sealed class instances. To define a class that creates instances that are not sealed, use the
dynamic attribute when declaring the class.

4.17 Slots

A slot is a location inside an instance used to store the value of a variable property. A slot is
allocated for each variable declaration.

4.18 Trait

A trait is a fixed property shared by all instances of the same type. The collection of traits defines
the invariants of the object's type. For this reason, use the traits object to describe the type of an
object. Traits are declared in the definition of the class used to create an object.

class A
{
 var x
 function m() { }
 function get y() { return 10 }
 function set y(v) { }
}

Each member of this class definition causes a trait to be added to the traits object for instances of
A. When an instance is created by class A, the resulting object has the properties x, m, and y,
implemented by traits for var x, function m, function get y and function set y.

Traits express the type of an instance. All traits are copied down to the derived traits objects. All
traits must be implemented. Interface members are abstract and so their traits must be
implemented in any class that inherits them.

5 Names

A name consists of a string and a namespace. Names are introduced into a particular scope by a
definition. Those definitions are referred to by names that result from expressions.

The qualified forms result in a single name consisting of the given qualifier and identifier. The
unqualified forms result in a set of names consisting of strings qualified by the open namespaces.

The visibility of an identifier is controlled by the set of open namespaces. The set of open
namespaces includes all of the implicitly opened namespaces and the namespaces opened by the
user. The implicitly opened namespaces are as follows:

Public namespace

Internal namespace for the current package

Private namespace for the current class

Protected namespaces for the current class

The namespaces opened by the user are controlled by the use namespace directives that are in
scope. For example:

namespace mx = "http://macromedia.com/mx"
use namespace(mx)
o.m()

In this example, the reference to o.m() will involve the names qualified by the namespace mx as
well as the implicitly opened namespaces: public, internal, etc.

The terms namespace and qualifier are used interchangeably when talking about qualified names.

5.1 Definition names

A name introduced by a definition might get its qualifier from one of various sources:

Top-level definitions in a package have the package name as their qualifier

Top-level definitions outside of a package are placed into an anonymous namespace that is
unique to the source code file that contains the definitions, which means that such definitions
are visible only within that file.

Interface members have the interface name as their qualifier

Dynamic property names have the public namespace as their qualifier

Definitions inside a class have the internal namespace of the current package as their
qualifier, unless a namespace attribute is specified

A definition with a namespace attribute has its corresponding namespace as its qualifier

A definition with an access control attribute has the implicitly defined namespace for that access
specifier as its qualifier

It is an error to introduce a name with an identifier that has already been defined in an open
namespace in the same scope, but with a different qualifier.

5.2 Reference names

Reference names result from various forms of expressions. The two main distinctions in these forms
are whether the name is qualified or unqualified, and whether the identifier is a literal identifier or an
expression.

The following table shows the kinds of references that include qualified and unqualified, literal and
expression names.

Literal Expression

Unqualified o.id, id o[expr]

Qualified o.q::id, q::id o.q::[expr], q::[expr]

A qualified or unqualified literal identifier is equivalent to the dynamic form with its expression
operand replaced by a string literal representing the literal identifier

An unqualified expression reference results in multiple names (called a multiname), one for
every open namespace combined with the string value of the expression expr

A qualified expression reference results in a qualified name that consists of the value of the
qualifier q combined with the string value of the expression expr

5.3 Name lookup

An expression involving a name results in an internal reference value used by certain operators to
perform actions. To describe name lookup, we distinguish between two types of references: those
that include a base object (object references), and those that do not (lexical references.)

Looking up a reference involves determining its ultimate qualified name (in the case of unqualified
references) and its base object.

5.3.1 Object references

Object references result from expressions involving the dot or bracket operators. They may be
qualified or unqualified. The following table shows various forms of object references.

Literal Expression

Unqualified o.id o[expr]

Qualified o.q::id o.q::[expr]

We use the expression form of references to describe the name lookup semantics. However, every
literal name can be rewritten as an expression name through the following steps:

If the expression is an unqualified literal name, then replace the dot operation o.id with a
bracket operations of the form o['id']

Otherwise, the expression is a qualified literal name, so replace the operand of the dot operation
with the dot operation o.q::['id']

5.3.1.1 Unqualified object references

The unqualified expression o[expr] is a reference to a property of the value of the expression o
that has a name that matches one of the names of the set of names (multiname) composed in the
following way:

Let id be the string value of the expression expr

Let m be an empty set of names

For each namespace q in the set of open namespaces:

Let n be a name with the qualifier q and the identifier id

Add n to the set of names m

Return m

The single name of a multiname reference r is determined by the following steps:

Let t be the least derived type of x that contains at least one of the names in the multiname set
m of the reference r

Let m' be the intersection of the set of names m and the property names in t

Let n be the set of names in the most derived type of x and in m'

If n is empty, return the name in m that is qualified by the public namespace

If n contains one name, then return that name

Report an ambiguous reference error

The base object of this reference is the value of the expression o.

Qualified object references

o.q::[expr]

This is a reference to a property inside the value of o that matches a single name. Because the
qualifier is explicit, the qualified name is straightforward to compute:

Let ns be the value of the expression q

Let id be the string value of the expression expr

Return the qualified name consisting of the namespace ns and the identifier id

The base object of this reference is the value of the expression o.

5.3.2 Lexical references

q::[expr]
q::id
id

Lexical references result from expressions involving a name but no base object. Whether a lexical
reference is qualified or unqualified, with a literal identifier or expression, it results in a search of the
scope chain of the lexical environment until either a match is found or the last scope is searched.

The scope chain might include the following kinds of scopes:

Code inside a with statement will have a with frame as the inner most scope on the scope
chain.

Code inside a function definition will have an activation object on its scope chain.

Code inside an instance method will have the instance this object on its scope chain.

Code inside of a class definition, including in instance and static methods, will have the class
objects of its base classes and the current class on the scope chain. The inner most class object
corresponds to the most derived class, and the outermost class object corresponds to the
Object class.

Code everywhere has the global object as the outer most object on its scope chain.

The base object of a lexical reference is computed through the following steps:

Let s be the list of scopes enclosing the reference being evaluated.

Let n be the qualified name or set of qualified names that result from the operation described in
section 5.3.1.1 Unqualified object references.

Search the scopes in s starting from the innermost scope and continuing outwards until a scope
is found that contains a property that matches n, or all scopes have been searched.

If a match is found, return the scope that contains the matching property.

Report a property not found error.

6 Types

A type is a set of values. Expressions have known values at runtime, and properties have known
types at compile time (as well as at runtime.) The various types of ActionScript 3.0 can be related
graphically as a type lattice where the edges of the lattice indicate subset relationships.

The following diagram shows the relationships between the main built-in types of the language:

There are three fundamental program visible types (Null, Object and void). What makes these
types fundamental is that their union includes all possible values in the language. Null includes null,
void includes undefined, and Object includes every other value. Null and void are different because
they do not have object-like properties (such as toString, valueOf), and they both have values that
represent a missing value.

The type Null includes one value - the value that results of the primary expression null. The value
null is used to represent the idea "no value" in the context of an Object typed reference.

The type void includes one value - the value that is the initial value of the global property
undefined and the result of the unary expression void 0. The value undefined is used to
represent the idea "no property" or "no value" in the context of an untyped reference.

While the need for two types that represent the idea of "no value" seems strange to programmers
familiar with statically typed object-oriented languages, the distinction is useful in ActionScript 3.0
to represent the absence of a property or the absence of a value of an untyped property versus the
absence of a typed property. Here is an example:

dynamic class A {
var x : String
var y

as3_specification48.html#126115

}
var a : A = new A
print(a.x) // null
print(a.y) // undefined
print(a.z) // undefined
a.y = 10
a.z = 20
print(a.y) // 10
print(a.z) // 20

When dealing with dynamic instances, there is little difference between a property that doesn't exist
and a property with no type and no value. But there is a difference between a property that has a
type and one that doesn't. This is one of the reasons for the existence of both types Null and void.

NOTE In ECMA-262 edition 3, program visible values were instances of one of six unrelated types
(Undefined, Null, Boolean, Number, String and Object). Conversions were provided to
translate a value from one type to another. ActionScript 3.0 provides the same
conversions between the primitive types (void/Undefined, Null, Boolean, String, Number,
int and uint).

6.1 Type operators

The language includes two type operators that enable programs to test and manipulate values in
terms of a type. These type operators are is and as.

6.1.1 Operator is

The is operator appears in expressions of the form:

v is T

The is operator checks to see if the value on the left is a member of the type on the right. For
user-defined types and most built-in types, is returns true if the value is an instance of a class
that is or derives from the type on the right, otherwise it returns false. For built-in numeric types
the result cannot be determined by the class of the value. The implementation must check the
actual value to see if it is included in the value set of the type.

The following table shows the results of using various values and types with the is operator:

Value String Number int uint Boolean Object

{} false false false false false true

"string" true false false false false true

"10" true false false false false true

null false false false false false false

undefined false false false false false false

true false false false false true true

false false false false false true true

0 false true true true false true

1 false true true true false true

-1 false true true false false true

1.23 false true false false false true

-1.23 false true false false false true

NaN false true false false false true

6.1.2 Operator as

The as operator appears in expressions of the form:

v as T

The purpose of the as operator is to guarantee that a value is of certain type, and, if not, indicate so
by returning the value null.

It is common usage to assign the result of an as expression to a property with the same type in
that expression. If the destination type does not include null, the assignment will convert null to
the default value of that destination type (that is, false for as Boolean and 0 for as Number). This
results in loss of information about whether the original value is included in that type. Programs that
need to distinguish between when a value is the default value and an incompatible value must
assign the result to a property of type Object, check for null, and then downcast to the ultimate
destination type.

The steps used to evaluate the as operator are:

Let v be the value of the left operand

Let T be the value of the right operand

If T is not of type Type

Throw a TypeError

If v is of type T

Return the value v

Else

Return the value null

6.2 Type Conversions

A type conversion is the translation of a value to a value that is a member of a specific destination
type. When the original value is a member of the destination type, the value is unchanged. We call
this an identity conversion.

Type conversions occur at runtime in various contexts:

Assignment expressions, argument lists, and return statements

The as operator

Other operators

The result of the conversion depends on the context of the expression that yields the value to be
converted:

var x : T = v Implicit conversion to T

var y : T = v as T v or null

var z : T = v + 10 Conversion according to the rules of the operator

Implicit conversions occur when a value is assigned to a property, passed as an argument to a
function, or returned from a function.

When the destination type is a user-defined type T, an implicit conversion will succeed if the value
is an instance of a class that is T or is derived from T. If an implicit conversion does not succeed,
then a type error is thrown.

When the destination type is a primitive type, the implicit conversion is described by the
corresponding abstract procedure (such as toString() and toNumber().) The following table shows
some implicit conversion results:

Value String Number int uint Boolean Object

{} "[object Object]" NaN 0 0 true {}

"string" "string" NaN 0 0 true "string"

"10" "10" 10 10 10 true "10"

null Null 0 0 0 false null

undefined Null NaN 0 0 false null

true "true" 1 1 1 true true

false "false" 0 0 0 false false

0 "0" 0 0 0 false 0

1 "1" 1 1 1 true 1

-1 "-1" -1 -1 2E+32-1 true -1

1.23 "1.23" 1.23 1 1 true 1.23

-1.23 "-1.23" -1.23 -1 2E+32-1 true -1.23

NaN "NaN" NaN 0 0 false NaN

User-defined types do not have built-in conversion operators, so implicit and explicit conversions
behave the same at runtime. Specifically, if a value is not a member of the destination type, then
no conversion exists, implicit or explicit, and a runtime exception will result from a cast expression
and the default value of the destination type (which is null) will be the result of an as expression.

6.3 Type annotations

A type annotation can be used when declaring a variable, a function parameter, or a function return
type to guarantee that the associated value will be a member of a specific data type. A type
annotation is a suffix that takes the form of a colon character (:) followed by a data type. Examples
of type annotations follow:

var num:Number
function foo(str:String) : Boolean {}

In the standard dialect, type mismatches are not reported at compile time. Rather, a runtime type
conversion is attempted and an error is reported if the type conversion fails. For example, the
following example not only compiles in the standard dialect, but also does not cause a runtime
error:

var num : Number = "1.23"
trace(num is Number) // output: true

In the strict dialect, type mismatches are reported as compile-time errors. Accordingly, the
previous example does not compile in strict mode because the string value "1.23" is not a member
of the Number data type. In other words, a variable v that uses the following syntax will not compile
unless v is a member of data type T:

var v:T

6.4 Runtime versus compile time type

We sometimes refer to a class or interface that helps to define the structure of a value as the
value's type. What we really mean is that that value is a member of that class or interface type.
This distinction is subtle but important. Since a value might belong to any number of unrelated
types, to say that it is of a particular type is misleading.

In dynamically typed languages, expressions don't have types; they have values whose types may
change each time the expression is evaluated.

Statically typed languages make the important simplification of associating a type with every
expression, even if it is a very general one, when it is compiled. In this way, the suitability of an
expression can be checked against its use before it is ever actually run. The cost of this added
reliability is the loss of flexibility that comes from not having to think about the types of values.

function f(o : Object) {
 var x : Number
 x = o // Allowed in the standard dialect
 }
 f(10) // No problem, x gets set to 10

Other places where the differences between dynamic and static type checking can be seen are
property access, and method invocation.

function f(o : Object) {
 o.g()
 return o.x
 }

Whereas in a static type system, the binding for a method call or property read would need to be
known at compile-time, the standard dialect always defers that checking until runtime.

The strict dialect has a hybrid type system. Normally, static type rules are used to check the
compatibility of an expression with its destination type, but there are a few special cases. For
example, when an expression on the right-hand side of an assignment expression consists of a
reference to a property with no type, name lookup is deferred to runtime. When an object reference
has a base object that is an instance of a dynamic class, the reference is checked at runtime. These
dynamic typing features are useful when strict dialect programs are interoperating with dynamic
features such as XML objects.

6.5 Untyped versus typed properties

A property without a type annotation or with the wildcard annotation * (as in var x : *) is said to
be untyped. Writing to an untyped property will always succeed since an untyped property can hold
any value. Expressions that read from an untyped property are said to be untyped expressions.
Assignment from an untyped expression may or may not succeed at runtime depending on whether
its value can be implicitly converted to the destination type. Nevertheless, in the strict dialect,
assignments from untyped expressions are always type-checked at runtime, as in the standard
dialect.

Use untyped properties when you want to store the result of an untyped expression or undefined
as one of the values, or when you want to defer type checking to runtime.

6.6 Object types

All program-visible types other than void and Null derive from type Object. This means that all
values (except undefined and null) have properties that can be accessed by object references
without the need to be wrapped in an object as they were in ECMA-262 edition 3.

6.7 Class types

A class refers to a type or a value depending on its use.

class A
{
 static var x
 var y
 prototype var z
}
var a : A // A means type A
a = new A // A means value A

The value is a class object that has the form shown in the drawing above. The class object is CA.
When used as a type, it evaluates to its instance traits (TA). When used in a new expression, the
class serves as a factory object with a special method that creates a new instance (OA), which
contains an internal delegate property pointing to the class object's prototype (P) and an internal
traits property pointing to the class object's instance traits (TA).

6.8 Interface types

An interface name can only be used where a type is expected:

interface I{}
var x : I // I means type I
x = new I // Error, I is not a value

6.9 Strict dialect and static types

In the strict dialect, both expressions and properties have types. To be used to compute the value
of a property, the expression must have a static type that is compatible with the type of the
property. One way to think about static types of expressions and values is that the static type is a
conservative approximation of the set of values that will result from that expression.

There are three special cases where static type rules are ignored, possibly allowing runtime errors
to occur:

Coercions from an untyped expression to any type

Coercions from any type to type Boolean

Coercions between different numeric types

An explicit cast to a user-defined type is only useful in the strict dialect. This is because the effect of
an explicit cast is to defer type checking until runtime, which is already the case in the standard
dialect. This is not necessarily the case for built-in types that have special conversion behavior.

7 Variables

A variable defines a slot with a name and a type.

A variable declared with the const rather than the var keyword, is read-only outside of the
variable's intializer if it is not an instance variable and outside of the instance constructor if it is an
instance variable. It is a verifier error to assign to a const variable outside of its writable region.

Variables exist in the following objects:

Global object, inside and outside of a package

Class objects

Instance objects

Activation objects

7.1 Variable modifiers

When allowed by the context of the definition, the following attributes modify a variable definition.

Access control namespaces

User defined namespaces

static

prototype

Access control and visibility control namespaces specify the namespace part of the variables name.

The static attribute may only be used inside a class definition and causes the variable to become a
trait of the class object rather than the instance object.

The prototype attribute may only be used inside a class definition and causes the variable to be
added to the class's prototype object and a get and set accessor to be added to the instance traits
of the class. The purpose of the accessor methods is to simulate the behavior of accessing
prototype properties in ECMA-262 edition 3.

7.2 Variable types

All variables can have a type. A type annotation on a variable definition limits the set of values that
can be stored in that variable. A type annotation must be a compile-time constant expression that
evaluates to a class or interface value. The actual value used to represent the type of the variable is
the instance traits of the referenced class or interface.

When a value is assigned to a variable, an implicit conversion to the variable's type is performed on
the value. A type error occurs if there is no implicit conversion of that value to the variable's type.
In the strict dialect, such errors are verification errors; in the standard dialect, type errors are
runtime errors.

If no type is specified, or if the wildcard annotation * is specified (as in var x : *), the variable is
said to be untyped.

8 Functions

A function is a callable object. In general, functions consist of a block of code, a set of traits, and a
list of scopes. Instance methods are functions that also consist of a receiver object to which this
references are bound.

8.1 Function modifiers

When allowed by the context of the definition, the following attributes modify a function definition:

Access control namespaces

User defined namespaces

static

final

override

native

Access control and visibility control namespaces specify the namespace part of the function name.

The static attribute may only be used inside a class definition and causes the function to become
a trait of the class object rather than the instance object.

The final attribute may only be used on a non-static function definition inside a class. A function
modified by final cannot be overridden.

The override attribute may only be used on a non-static function definition inside a class. A
function modified by override will override a method with the same name and signature as a non-

final method of a base class.

The native attribute may be used to indicate that the function is implemented in an
implementation-defined way. The compiler should generate native stubs for functions that have this
attribute.

8.2 Function signatures

A function signature includes the number and types of its parameters and its result type. Like
variable type annotations, the types of a function signature affect the implicit conversion of
argument and return values when calling to and returning from a function. Function signatures are
also used to match inherited methods to methods in a derived class.

8.3 Function objects

Global and nested functions can be used as constructors in instantiation expressions, as shown in
the following example:

function A() { this.x = 10 }
var o = new A
trace(o.x) // traces 10

Function objects have a property named prototype whose value is used to initialize the intrinsic
delegate property of the objects it creates. The prototype property has a default value of a new
instance of the class Object. Building on the previous example:

function A() { this.x = 10 }
function B() {}
B.prototype = new A
var o = new B
trace(o.x) // traces 10

The value of o is an instance of B, which delegates to an instance of A, which has a property named
x with value of 10.

Constructor methods inside of a class are also used to create objects. But, unlike constructor
functions, constructor methods create objects with a set of fixed properties (traits) associated with
its class and a delegate that is also an instance of its class.

class A {
 var x
 function A() { this.x = 10 }
}
var o = new A
trace(o.x) // traces 10

There are some subtle differences between the preceding example and the one involving a function
constructor:

x is a fixed property of each instance of A rather than a dynamic property.

A.prototype is an instance of A rather than an instance of Object.

The expression A(expr) does not call the function A defined in class A. It results in an explicit
conversion of the value of expr to the type A.

Class methods are functions that are defined with the static attribute inside of a class definition. A
class method cannot be used as a constructor and does not define the this reference. Class
methods are in the scope of the class object in which they are defined.

Instance methods are functions that are defined without the static attribute and inside a class
definition. Instance methods are associated with an instance of the class in which they are defined.
Instance methods can override or implement inherited class or interface methods and always have
a value bound to this.

The value of this in an instance method is the value of the instance the method belongs to. When
an instance method is extracted from an object, a bound method is created to bind the value of
this to that host object. Assignment of the bound method to a property of another object does not
affect the binding of this. For example:

class A {
 var x
 function A() { this.x = 10 }
 function m() { trace(this.x) }
}
var a = new A()
var o = { x : 20 }
o.m = a.m
o.m() // traces 10

9 Classes

A class is a type, a constructor of objects of that type, and a singleton object for sharing state and
behavior. It is used as a constructor to create like instances. It is used as a type to constrain the
value of properties. It is used as a singleton object to contain shared properties.

Classes are introduced with class definitions. A class definition can directly extend one other class
definition and implement multiple interface definitions. The language does not support the concept
of abstract classes and so a class must implement every interface method it inherits.

9.1 Class modifiers

Class definitions may be modified by these attributes

dynamic Allow properties to be added to instances at runtime

final Must not be extended by another class

internal Visible to references inside the current package (default)

public Visible to references everywhere

The default modifiers for a class definition are internal, non-dynamic, and non-final.

9.2 Class objects

Class objects have the basic structure shown in the following illustration:

The illustration shows the shape of the class object that results from the following simple class
definition:

class A {}

9.2.1 Prototypes

Every object has a prototype object that is used to match references at runtime. This prototype is
called the delegate of the object. Delegation is a simple way to add shared properties to a group of
related objects at runtime.

Prototype objects are always instances of the dynamic class Object and therefore can always be
extended by the addition of dynamic properties. Unlike with function closures that have a prototype
property that is a variable and can be reset to another object, classes have a prototype that is
read-only and so always point to the same object.

9.2.2 Traits

Properties of a class definition are represented as traits of the class object and its instances. Think
of a trait as a fixed property that is shared by all instances of a type. Class objects (CA) are special
in that they are a single instance with an internal type with a corresponding set of traits (TCA). The
internal type of a class object describes the static properties of the class definition. The instance
traits (TA) are shared by all instances created by the class object. They correspond to the instance
properties of the class definition.

class A
{
 static var x
 var y
}

In this example, the definition for x contributes a trait to the class traits (TCA), and the definition of
y contributes a trait to the instance traits (TA).

9.2.3 Methods

Each function definition inside a class definition results in a method inside the resulting class object
or its instances. Two special methods are implicitly defined for each class: a class initializer; and an
instance initializer. Code outside a function definition gets placed in the class initializer, which is
called when the class object is created. Instance variable initializers are placed in the instance
initializer method, which is called when an instance of the class is created and before the user-
defined constructor is executed.

9.2.4 Slots

Traits introduced by variable definitions describe a property that holds a value unique to each
instance. Therefore, each object has a fixed array of slots that store those values, one for each
variable trait. This is true of class objects as well as instance objects.

9.2.5 Instances

All instances (OA) created by a class object (CA) will be given a traits (TA) and delegate (PA)
object, as represented in this drawing

9.2.6 Inheritance

Each class inherits the instance traits of its base class. These traits are effectively copied down to
the instance traits of the derived class. Classes that don't declare an explicit base class inherit the
built-in Object class.

A class may also inherit the instance traits of one or more interfaces. Interface traits are abstract
and so must be implemented by any class that inherits them.

Unlike static properties in other object-oriented languages, such as Java, static properties in
ActionScript are not inherited, but they are in scope in the static and instance methods of the
derived class.

9.2.7 Scopes

Static properties are in scope of bodies of static and instance methods of the same class. Instance
properties are in scope of the bodies of the instance methods. Instance properties shadow static
properties with the same name. Static properties of base classes are in scope of static and instance
methods of a class.

class A
{
 static var ax
}
class B extends A
{
 static var bx
}
class C extends B
{
 static var cx
 var ix
 function m()
 {
 var mx
 gx = 10
 ax = 20
 bx = 30
 cx = 40
 mx = 50
 }
}
var gx
o = new C
o.m()

Scopes:

{ mx } - activation scope

{ ix } - instance scope

{ cx } - static scope C

{ bx } - static scope B

{ ax } - static scope A

{ gx } - global scope

9.3 Class property attributes

Class properties may be modified by the following attributes

static Defines a property of the class object

private Visible to references inside the current class

internal (default) Visible to references inside the current package

protected Visible to references inside instances of the current class and derived
classes

public Visible to references everywhere

AttributeExpression Namespace value is the qualifier for the name of the definition

It is a syntax error to use any other attribute on a class property, unless otherwise specified in the
section describing the specific type of property.

9.3.1 Static attribute

The static attribute means the current definition defines a property of the class object.

9.3.2 Prototype attribute

The prototype attribute was not implemented in ActionScript 3.0.

9.3.3 Access control namespace attributes

Each access control attribute (private, internal, protected, and public) refers to a namespace
value with a unique, private namespace name. Access control is provided by the fact that code
outside of the attribute's access domain has no way to refer to that namespace value.

9.3.4 User-defined namespace attributes

The value of an attribute expression that evaluates to a compile-time constant namespace is used
as the qualifier of the definition's name.

namespace ns
class A
{
 ns var x
}

In the preceding example, the name of the definition of x is qualified by the namespace ns. Note
the following rules:

Only one namespace attribute may be used per definition.

Namespace attributes may not be used with an access control attribute.

9.4 Class body

A class body may contain variable definitions, namespace definitions, function definitions, and
statements:

class A
{
 static var x
 static function f() {}
 var y
 function g() {}
 trace("class loaded")
}

Definitions result in class or instance traits depending on whether the static attribute occurs in
their definition.

Statements and initializers of static variables are added to the static initializer method of the
class. The static initializer is called once, when the class is defined at runtime. The static
initializer can be used to initialize variables of the class object and to invoke methods that are
external to the current class.

Initializers of instance variables are added to the instance initializer method.

The scope chain of methods contained by the class body includes the class object, the base
class objects (from most derived the least derived), and the global object.

Note that it is not an error to define a class and instance property with the same name, as in the
following example:

class A {
 static var x
 var x
}

It is also not an error to define a class property with the same name as a visible class property in a
base class:

class A {
 static var x
}
class B extends A {
 static var x
}

9.5 Class variables

Class variables are defined using the var or const keywords.

class A
{
 var x
 const k = 10
}

The meaning of var and const follow from the general meaning described in the sections 7
Variables and 1.4 Variables.

var May be written to multiple times

const May be written to only once

const variable properties can be written to only once. The compiler uses a specific data flow
analysis to determine if a const variable has been written to at the point of an assignment to that
variable. Informally, the effect of this algorithm can be seen in the following error cases:

It is an error to assign to a const instance or static variable in a statement that is outside of the
instance or static initializer, respectively.

It is an error to assign to a const variable more than once in a sequence of statements with no
control flow branches.

as3_specification62.html#126778
as3_specification6.html#125717

It is an error to assign to a const variable in more than one parallel control flow branch if the
branch conditions are not compile-time constant expressions, or if the value of those branch
conditions allow for one or more of those branches to be executed more than once.

The default value of a class or instance variable is the value of undefined coerced to the type of the
variable.

9.5.1 Static variables

Variables declared with the static attribute add a slot trait to the class traits and a slot to the class
object. Because there is only one class object per class, there is also only one slot per static
variable. Static variables, like static methods, are not inherited, but are accessible from within the
body of the class definition and through an explicit reference to the defining class's name. Static
variables are in scope for all static and instance methods of the defining class and classes that
inherit the defining class.

Static const variables must either have an initializer or be definitely unassigned before being set in
the static initializer method.

NOTE Unlike in Java and C#, static variables are not inherited by derived classes and so cannot
be referenced through derived class objects.

9.5.2 Instance variables

Variables declared without the static attribute add a slot trait to the instance traits of the class
and a slot to each instance of the class. Instance variables are always final and must not be
overridden or hidden by a derived class.

As with all class properties, the default qualifier for the variable is the internal namespace. Other
qualifiers can be specified by other namespace attributes. Both instance and class variables are
implicitly final. Any attempt to hide or override one in a derived class will result in a verification
error.

9.6 Class methods

A method is a function associated with a specific object. Unlike a function closure, a method is not a
value and cannot be used apart from the instance to which it is bound. The value of this inside a
method is always the base object used to refer to the method, and always has the type of the class
that implements the method, or subclasses of that class.

9.6.1 Constructor methods

A function declared with the same identifier as the class it is defined in adds a constructor method
to the class object. The constructor is called when a new instance of that class is created. A
constructor may refer to the instance variables of the class that defines it.

class A
{
 function A() {}
}

A constructor is public by default and may be defined with the public namespace or with no

A constructor is public by default and may be defined with the public namespace or with no
namespace attribute. If no constructor is defined by a class definition, a default constructor is
defined implicitly. No more than one constructor can be defined for a class.

If the body of a constructor contains a SuperStatement, that statement must occur before the first
reference to this or super, and before any return or throw statement. If a call to the super
constructor is not explicit, one will be inserted before the first statement in the constructor body.
Note the following errors:

It is a syntax error to call the super constructor more than once.

It is a syntax error to specify a return statement with an expression.

It is a syntax error to specify a result type of a constructor.

NOTE That there is no way to directly call the constructor of an indirect base class is intentional
because it might lead to brittle or insecure programs.

9.6.2 Static methods

Functions declared with the static attribute add a method trait to the class object traits. Static
variables are in scope of a static method.

It is an error for the this or super expression to appear in the body of a static method.

NOTE Unlike in Java and C#, static variables are not inherited by derived classes and so cannot
be referenced through derived class objects.

9.6.3 Instance methods

Functions declared without the static attribute add a method trait to the instance traits of a class
object. Static and instance variables are in scope of an instance method. The value of this inside
an instance method is the instance the method is bound to.

class A
{
 function m() { return this }
}
var a = new A
trace(a==a.m()) // trace true, this is the object 'm' is called on

In addition to the attributes defined for all class properties, the following attributes may be used on
instance methods

final May not be overridden

override Must override an inherited method

The override attribute helps to avoid unintentional overriding of base class methods. It is a verifier
error to use the override attribute on a function definition that does not override an inherited
method. It is a verifier error to override an inherited method that is declared final. It is an error to
define a method without the override attribute if the name matches the name of an inherited
method.

The prototype attribute allows the addition of a fixed property to the prototype object, but not to
the instance. Instance methods defined with the prototype attribute have function values that are
compatible with ECMA-262 edition 3 prototype functions.

class A
{
 prototype var f = function() { return this }
}
var a = new A
dynamic class B {}
var b = new B
b.f = a.f
b.f() // traces "[object B]"

The instance of B becomes the value of this.

9.6.4 Accessor methods

A method defined with the get or set keyword adds a get or set method trait to the instance or
static traits of the defining class object. Accessor methods are called when the name of the
accessor is used in a reference that reads or writes the value of that name.

class A
{
 private var _x
 function get x() { return _x }
 function set x(v) { _x = v }
}
var a = new A
a.x = 10 // calls set accessor of A
trace(a.x) // traces 10, calls get accessor of A

Accessor methods are very similar in definition to regular methods. The differences are expressed
by the following error conditions:

Get methods must specify no parameters.

Set methods must specify just one parameter.

Get methods must return a value.

Set methods have a result type void by default.

Set methods must not specify a result type other than void.

Get methods must not specify the result type void.

If both a get and set method is defined with the same name, the parameter type of the set
method and the result type of the get method must match.

NOTE Accessors may only be defined at the top level of a class. They must not be nested inside
another method or defined outside of a class.

9.6.5 Inheriting instance methods

Instance methods are inherited by copying their instance traits down to the instance traits of the
derived class.

9.6.5.1 Overriding instance methods

Methods inherited from a class may be overridden in the derived class if the overriding method is

Methods inherited from a class may be overridden in the derived class if the overriding method is
given the override attribute and if its name, number and type of parameters, and return type match
exactly. It is an error to attempt to override a method with a method that has the same name, but
does not have the same number of parameters or parameters of different types or different return
type.

9.6.5.2 Implementing interface methods

Methods inherited from an interface must be implemented by a method with a name and signature
that matches the inherited method. Interface methods are implemented by an instance method
declared with the public attribute.

A method that has the public attribute implements all inherited interface methods with a matching
identifier.

interface I
{
 function m()
}
interface J
{
 function m()
}
class A implements I,J
{
 public function m() { trace("A.m") }
}

In this example, the definition of m in class A satisfies both interfaces I and J.

9.6.6 Bound methods

Although a method is not a value by itself, it can be converted to a first class value called a bound
method, through extraction. A bound method maintains the binding between a method and its
instance. The user-visible type of a bound method is Function.

class A
{
 function m() { return this }
}
var a = new A
var mc : Function = a.m // create a bound method from m and a
trace(a==mc()) // trace true, mc remembers its this

10 Interfaces

Interfaces provide a way for programs to express contracts between the producers and consumers
of objects. These contracts are type safe, easy to understand, and efficient to implement. Programs
should not have to pay a significant performance penalty for using interfaces.

An interface is a type whose methods must be defined by every class that claims to implement it.
Multiple interfaces can be inherited by another interface through the extends clause or by a class
through the implements clause. Instances of a class that implements an interface belong to the
type represented by the interface. Interface definitions must only contain function definitions, which
may include get and set methods.

Interface methods are not public by default, but are added to the public namespace by the

Interface methods are not public by default, but are added to the public namespace by the
implementing method definition.

10.1 Interface types

An interface definition introduces a type into the current scope. The interface type is described by a
set of abstract method traits and a list of interfaces that it extends. This set of abstract traits must
be fully implemented by any class that inherits the interface.

An interface name refers to the interface type when it is used in a type annotation or an inheritance
clause of a class or interface definition.

interface I {}
class A implements I {} // I refers to type I
var x : I = new A // In each of these uses too
trace(x is I)
var y : I = x as I

When a reference is bound to an interface at compile-time, the value of that reference is always the
compile-time interface value, even if the interface definition would be shadowed by another
property at runtime. This is shown in the following example:

interface T {}
class A implements T {}
class B {}
function f() {
 var T = B
 var x = new A
 trace(x is T) // T refers to interface T, not var T, traces true
}

In this example, T in the is expression refers to the outer interface T, not the inner var T.

10.2 Interface methods

Classes that implement an interface method must use the public attribute to implement all
interface methods that have the same identifier name. The following example shows a class that
implements two inherited interfaces with public qualified methods.

interface I
{
 function f()
}
interface J
{
 function g()
}

class A implements I
{
 public function f() {}
 public function g() {}
}

10.2.1 Visibility of interface methods

Interface methods are visible when referenced through a property of the corresponding interface
type or through a reference to the implementing class or subclass.

var a : A = new A
a.f() // okay, f is visible through an A as {public}::f
a.g() // okay, g is visible through an A as {public}::g
var i : I = b
i.f() // okay, f is still visible through an I as {I}::f
i.g() // error, g is not visible through an I as {I}::g

References through an object with an interface type are multinames that contain only the names
qualified by the interface namespace and its super interface namespaces. This means that the
names in the open namespaces (including public) will not be visible through a reference with an
interface-typed base object. The motivation for this behavior is to express the idea of the interface
as a contract between the producer and consumer of an object, with the contract specified by the
names in the interface namespace alone.

If the compile-time type of the base object is not an interface type, an unqualified reference will use
the currently open namespaces (which includes public) to create a multiname in the normal way.
Again, ambiguous references can be explicitly qualified with the interface name to avoid conflicts.

10.2.2 Inheritance of interface methods

The rules for implementing an inherited interface method are the same as the rules for overriding
an inherited class method. Specifically, the name of the method, number and type of the
parameters, and return type must match exactly.

It is a verification error if a class implements an interface method with a method whose name
matches, but the parameter count or types or return type do not match. It is a verifier error if a
class inherits an interface method that it does not implement.

10.3 Interface example

The following example shows how interfaces are defined and used.

interface T
{
 function f()
}

interface U
{
 function f()
 function g()
}

interface V extends T,U
{
 function h()
}

class A implements V
{
 public function f() {} // implements {T,U}::f

 public function g() {} // implements {U}::g
 public function h() {} // implements {V}::h
}

var a : A = new A
var t : T = a
var u : U = a
var v : V = a

t.f() // {T}::f referenced, T::f matched
u.g() // {U}::g referenced, U::g matched
v.f() // {T,U,V}::f referenced, {T,U}::f matched
v.g() // {T,U,V}::g referenced, U::g matched
v.h() // {T,U,V}::h referenced, V::h matched
a.f() // {public,…}::f referenced, public::f matched

var o = a

o.f() // {public,…}::f referenced, public::f matched

A few highlights of this example:

An implementing class must use public as an attribute to make the method implement all
interface methods with a matching identifier.

The static type of the base object of a reference controls which interface names are open in that
reference if that type is an interface type.

11 Packages

A package definition introduces a top-level namespace, suitable for organizing collections of type
definitions into APIs.

Unlike ordinary namespaces (hereafter referred to simply as namespaces), a package is a pure
compile-time construct. A package directive qualifies the names of properties defined inside of it at
compile time; references to a package's member definitions are given fully qualified names at
compile time.

package mx.core
{
 class UIObject extends ...
 {
 }

 .
 .
 .
}

In this example, the fully qualified name for UIObject is mx.core.UIObject. An unqualified
reference to UIObject will be fully qualified as mx.core.UIObject by the compiler.

Package definitions may be discontinuous; the definition of a package may be spread over multiple
package definitions, possibly in multiple source files.

The semantics of loading packages is outside of the language definition. The compiler and virtual
machine will have access to the package definitions in files that have been loaded by the
embedding tool or runtime.

11.1 Package namespace

The namespace name (the string used for equality comparision) of a package is the sequence of
characters of its name. For example, the package in:

package mx.core {
 .
 .
 .
}

is given the namespace name "mx.core".

Package names are used to:

Qualify the names of top-level definitions in a package

Qualify the names of references to those definitions

Import names into other packages.

package acme.core
{
 public class Widget { } // qualifies Widget
}

import acme.core.* // make visible all names in acme.core
var widget : acme.core.Widget // distinguishes a reference to Widget

Packages exist only at compile time. The static existence of packages allows us to give them
certain properties that would not be possible if they could be manipulated at runtime. In particular:

Package names may have embedded dots.

Fully qualified package references may and must be expressed using the dot operator rather
than the usual :: syntax for qualified names

But because there is no runtime value for a package name, packages cannot be aliased or
otherwise used in an expression that uses a runtime value.

When encountered in a valid context by the compiler, the meaning of a package name becomes
fixed; any interpretation at runtime is no longer possible.

For this reason, a package name always shadows locally defined names, independent of the scope
chain, when that package name is used on the left hand side of a dot operator.

package p
{
 public var x = 10
}
import p.x
function f()
{
 var p = { x : 20 }
 trace(p.x) // traces 10
}
f()

The following strict errors affect packages:

It is a strict error to import a package that cannot be found.

It is a strict error to reference a package property that cannot be found in an imported package.

11.2 Package members

Definitions with the public attribute inside a package definition are implicitly qualified by the
package namespace. Every kind of definition except for package definitions may appear directly
inside a package definition, including variable, function, namespace, class, and interface definitions.

11.2.1 Package property attributes

The visibility of a name defined inside of a package is controlled by the attributes that appear in
that definition. Allowed attributes include the following:

public Qualified by the package namespace

internal Qualified by the internal namespace for the current package [default]

It is a syntax error for more than one of these attributes to appear in a definition.

11.3 Package import

The names of package members are made visible inside an external scope with an import
directive. For example, the following code makes all public names defined in the package mx.core
visible inside any scope that contains this directive:

import mx.core.*

Individual names can be imported using an import directive with the fully qualified name to be
imported. For example, the following code has the effect of making the class mx.core.Image, but no
other names defined inside package mx.core, visible to an unqualified reference.

import mx.core.Image

References to package members are fully qualified using the dot operator. When the meaning of a
simple name is ambiguous, a fully qualified name can be used to indicate the intended binding. For
example:

import mx.core.*
import player.core.*

new Image // error, mx.core.Image or player.core.Image?
new player.core.Image // okay

Visibility of package members outside of a package is controlled by access control namespaces. The
default namespace of a package member is package internal. For example:

package acme.core
{
 public class Widget { }
 class WidgetImpl {} // default namespace is internal
}

import acme.core.*
new WidgetImpl // error, cannot find WidgetImpl
new Widget // okay, public names are always visible

In this example, class WidgetImpl is in the internal package namespace for package acme.core.
This namespace is always open inside of any definition of package acme.core, and never open or
accessible outside of a definition of acme.core.

11.3.1 Single name aliases

A name alias can be provided for single name import directives to avoid ambiguity of unqualified
references, as shown in the following code:

package acme.core
{
 public class Widget { }
}

package mx.core
{
 public class Widget { }
}

import AcmeWidget = acme.core.Widget
import MxWidget = mx.core.Widget
new AcmeWidget
new MxWidget

When an alias is specified, the original fully qualified name can be used to refer to the imported
definition. It is also possible to use the original unqualified name as long as the resulting reference
is not ambiguous.

11.4 Unnamed package

The unnamed package is defined by a package definition with no name specified, as shown in the
following code:

package
{
}

The unnamed package is implicitly imported by all other packages and global code outside of any
package. This makes it convenient for casual sharing of definitions between programs by making
public definitions in the unnamed package always visible.

12 Namespaces

Namespaces are used to qualify names. ECMAScript for XML (E4X) introduced the idea of explicitly
qualifying names to reference properties of an XML object. XML namespaces allow markup with
various meanings, but potentially conflicting names, to be intermixed in a single use. Packages in
ActionScript 3.0 provide such a capability. XML namespaces also allow names to be individually
qualified to create sub-vocabularies relating to concerns secondary to the main purpose of the

qualified to create sub-vocabularies relating to concerns secondary to the main purpose of the
markup. Namespaces in ActionScript 3.0 provide this capability, that is, controlling the visibility of
names independent of the structure of the program. This is useful for giving trusted code special
access privileges and for distinguishing the meaning of a name between versions and uses.

12.1 Namespace values

Namespace definitions introduce a constant fixed property of type Namespace into the defining
scope. The property is initialized to an implicit or explicit value. Regardless of how it is initialized, a
namespace value consists of a namespace name used for equality comparison.

The following example shows the definition of several namespaces:

namespace N1
namespace N2 = N1
namespace N3 = 'http://www.ecma-international.org/namespace'

N1 is given an anonymous namespace name. N2 is an alias of N1. N3 is given a namespace with the
namespace name of 'http://www.ecma-international.org/namespace'. When created by a
namespace definition, the prefix of a namespace is initialized to the value undefined.

The set of attributes that may be used on a namespace definition is the same as the set that can be
used on a variable definition.

12.2 Namespaces as attributes

When used as an attribute of a definition, a namespace specifies the namespace qualifier of that
definition's name:

namespace N1
namespace N2
N1 var x : int = 10
N2 var x : String = "hello"

Here, two distinct variables are defined--one with the qualified name N1::x and the other with the
qualified name N2::x. Referencing code can refer to one or the other of these names by explicitly
qualifying references to x or by adding one or the other namespace to the set of open namespaces.

It is an error to use a user-defined namespace as an attribute except in the top-level of a class
definition.

12.3 Namespaces as qualifiers

References to a name qualified by a namespace can be explicitly qualified by that namespace:

namespace N1
namespace N2
N1 var x : int = 10
N2 var x : String = "hello"

trace(N1::x)

In this case, the qualification is necessary because an unqualified reference to x would not match
any visible definition of x, and would therefore result in a runtime exception.

12.4 Open namespaces

The set of open namespaces determines the visibility of unqualified references. If the qualifier of a
name is not in the set of open namespaces, it will not be visible to an unqualified reference.
Namespaces are added to the list of open namespaces by the use namespace directive. Building on
the previous example, the namespace N1 is added to the set of open namespaces:

namespace N1
namespace N2
N1 var x : int = 10
N2 var x : String = "hello"
use namespace N1
trace(x) // trace 10

The unqualified reference to x matches any name that has the identifier x and is qualified by one of
the open namespaces, in this case N1::x.

It is a runtime error for more than one name to match an unqualified reference.

The set of open namespaces includes any namespace that is explicitly used in that block or an outer
nested block, as well as the public, internal, protected, and private namespaces that are implicitly
open in various contexts.

Bindings of explicitly used namespaces are preferred over names in the public namespace. This
allows a public name to be given an open user-defined namespace without making unqualified
references ambiguous:

namespace N1
N1 var x : int = 10
public var x : String = "hello"
use namespace N1
trace(x) // okay, matches N1::x, even though public::x is also visible

12.5 Namespace examples

12.5.1 Access control

class A {
 private namespace Key
 private var friends = [B]
 function beMyFriend(suitor) {
 for each(friend in friends)
 {
 if(suitor is friend) return Key
 }
 return null
 }
 Key function makeMyDay()
 {
 trace("making my day")
 }
}

class B {
 function befriendAnA(a:A) {
 var key : Namespace = a.beMyFriend(this)
 if(key != null)
 {
 a.key::makeMyDay()
 }
 }
}

12.5.2 Version control

package p {
public namespace V2
public class A {
 public function m() {}
 V2 function m() {}
}
}

import p.v1
import p.v2
import p.A

// version 1

class B extends A
{
 public function m() {}
}

// version 2

class B extends A
{
 public function m() {}
 V2 function m() {}
}

use namespace p.V2 // open p.V2, prefer it over public
var a : A = new B
a.m()

12.5.3 Vocabulary control

Namespace definitions allow multiple vocabularies to be defined in a single class. This is a kind of
polymorphism that is independent of the class abstraction. It is useful when you have common
functionality that has a more than one public interface. You could use subclasses to express the
overridden behavior, but if there is more than one vocabulary that needs to be mixed in, the
number of combinations quickly explodes.

package p {
public namespace French
public namespace Vegan

public class Person {
 public function sayIt() { /* say it in English */ }
 French function sayIt() { /* say it in French */ }
 public function eatIt() { /* eat steak */ }
 Vegan function eatIt() { /* eat vegan */
}
}

import p.*

var person = new Person()

{
 use namespace French
 use namespace Vegan
 person.sayIt() // speak French
 person.eatIt() // eat vegan
}

{
 person.sayIt() // speak English
 person.eatIt() // eat meat
}

13 Lexical Structure

13.1 Lexical

Lexical keywords are removed from the available program namespace during scanning. It is a
syntax error to use any of these names except as indicated by the grammar. Syntactic keywords
appear to the lexical scanner as identifier tokens, but are given special meaning in certain contexts
by the parser.

The following list contains all keywords:

as break case catch class const continue default delete do else extends false finally for function if implements import in instanceof interface internal is native new null package private protected public return super switch this throw to true try typeof use var void while with

The following list contains all identifiers that are syntactic keywords:

each get set namespace include dynamic final native override static

13.2 Syntactic

Identifiers with special meaning become keywords in certain syntactic contexts:

In a for-each-in statement between the 'for' token and the '(' token:

each

In a function definition between the 'function' token and an identifier token:

get set

As the first word of a directive:

namespace include

In an attribute list or wherever an attribute list can be used:

dynamic final native override static

It is a syntax error to use a syntactic keyword in a context where it is treated as a keyword:

namespace = "hello"
namespace()

In these cases, the grammar requires an identifier after the namespace keyword.

14 Expressions

The syntax in this section contains the following superscript and subscript symbols:

The opt subscript is attached to symbols that are optional.

The allowIn superscript is attached to nonterminals that can be defined with a production rule
that contains the in operator.

The noIn superscript is attached to nonterminals with definitions that do not include a
production rule that contains the in operator. This superscript is necessary to avoid conflicts
between the in operator as part of a relational expression and the in operator as part of a for
statement.

The β superscript is shorthand notation that denotes a nonterminal with a pair of definitions: an
allowIn version and a noIn version.

14.1 Identifiers

Identifiers may be either simple identifiers or qualified identifiers. Qualified identifiers result in a
single name consisting of a namespace and a string. The string is specified by an expression or a
literal identifier. The namespace is specified by an expression that precedes the :: punctuator.
Simple identifiers result in one or more names that consist of the identifier string and each of the
namespaces open in the scope of the expression. The resulting name value(s) are used to construct
a Reference value specified by a larger expression.

Syntax

Identifier

 Identifier

 dynamic

 each

 get

 include

 namespace

 set

 static

PropertyIdentifier

 Identifier

 *

Qualifier

 PropertyIdentifier

 ReservedNamespace

SimpleQualifiedIdentifier

 PropertyIdentifier

 Qualifier :: PropertyIdentifier

 Qualifier :: Brackets

ExpressionQualifiedIdentifier

 ParenExpression :: PropertyIdentifier

 ParenExpression :: Brackets

NonAttributeQualifiedIdentifier

 SimpleQualifiedIdentifier

 ExpressionQualifiedIdentifier

QualifiedIdentifier

 @ Brackets

 @ NonAttributeQualifiedIdentifier

 NonAttributeQualifiedIdentifier

Expressions of the form

SimpleQualifiedIdentifier : Qualifier :: PropertyIdentifier
SimpleQualifiedIdentifier : ParenExpression :: PropertyIdentifier

are syntactically rewritten as

SimpleQualifiedIdentifier : Qualifier :: Brackets
SimpleQualifiedIdentifier : ParenExpression:: Brackets

respectively, where the expression between Brackets is a string literal with the same sequence of
characters as the PropertyIdentifier.

Verification

Identifier : Identifier

Identifier : each

Identifier : get

Identifier : include

Identifier : namespace

Identifier : set

Return the type String

PropertyIdentifier : Identifier

Qualifier : PropertyIdentifier

Qualifier : ReservedNamespace

SimpleQualifiedIdentifier : PropertyIdentifier

Return the result of verifying the non-terminal symbol on right-hand side of the production

SimpleQualifiedIdentifier : Qualifier :: PropertyIdentifier

Let qual be the result of verifying Qualifier

Call verifyType(qual,Namespace)

Return the type Name

SimpleQualifiedIdentifier : Qualifier :: Brackets

Let qual be the result of verifying Qualifier

Call verifyType(qual,Namespace)

Let expr be the result of verifying Brackets

If expr is of type Name

Throw a VerifierError exception

Return the type Name

ExpressionQualifiedIdentifier : ParenExpression :: PropertyIdentifier

Let qual be the result of verifying ParenExpression

Call verifyType(qual,Namespace)

Return the type Name

ExpressionQualifiedIdentifier : ParenExpression :: Brackets

Let qual be the result of verifying ParenExpression

Call verifyType(qual,Namespace)

Let expr be the result of verifying Brackets

If expr is of type Name

Throw a VerifyError exception

Return the type Name

NonAttributeQualifier : SimpleQualifiedIdentifier

NonAttributeQualifier : ExpressionQualifiedIdentifier

Return the result of verifying the non-terminal symbol on right-hand side of the production

QualifiedIdentifier : @ Brackets

Verify Brackets

Return the type Name

QualifiedIdentifier : @ NonAttributeQualifiedIdentifier

QualifiedIdentifier : NonAttributeQualifiedIdentifier

Verify NonAttributeQualifiedIdentiifer

Return the type Name

Evaluation

Identifier : Identifier

Identifier : each

Identifier : get

Identifier : include

Identifier : namespace

Identifier : set

Return a new String value consisting of the sequence of characters of the token on the right-
hand side of the production

PropertyIdentifier : Identifier

Return the result of evaluating Identifier

PropertyIdentifier : *

Return the new instance String("*")

Qualifier : PropertyIdentifier

Qualifier : ReservedNamespace

SimpleQualifiedIdentifier : PropertyIdentifier

Return the result of evaluating the non-terminal symbol on right-hand side of the production

SimpleQualifiedIdentifier : Qualifier :: PropertyIdentifier

Let qual be the result of evaluating Qualifier

Let str be the result of evaluating PropertyIdentifier

Return the new instance Name(qual,str,false)

SimpleQualifiedIdentifier : Qualifier :: Brackets

Let qual be the result of evaluating Qualifier

Let expr be the result of evaluating Brackets

If expr is of type Name

Throw a TypeError exception

Let str be the result of calling String(expr)

Let name be the instance Name(qual,str,false)

Return name

ExpressionQualifiedIdentifier : ParenExpression :: PropertyIdentifier

Let qual be the result of evaluating ParenExpression

Let str be the result of evaluating PropertyIdentifier

Return the new instance Name(qual,str,false)

ExpressionQualifiedIdentifier : ParenExpression :: Brackets

Let qual be the result of evaluating ParenExpression

Let expr be the result of evaluating Brackets

If expr is of type Name

Throw a TypeError exception

Let str be the result of calling String(expr)

Let name be the instance Name(qual,str,false)

Return name

NonAttributeQualifier : SimpleQualifiedIdentifier

NonAttributeQualifier : ExpressionQualifiedIdentifier

Return the result of evaluating the non-terminal symbol on right-hand side of the production

QualifiedIdentifier : @ Brackets

Let expr be the result of evaluating Brackets

If expr is of type Name

Let name be the set consisting of expr

Else

Let str be the result of calling String(expr)

Let namespaces be the result of calling openNamespaces(ctx)

Let name be the result of makeMultiname(namespaces,str)

Call makeAttributeName(name)

Return name

QualifiedIdentifier : @ NonAttributeQualifiedIdentifier

Let name be the result of evaluating NonAttributeQualifiedIdentifier

Call makeAttributeName (name)

Return name

QualifiedIdentifier : NonAttributeQualifiedIdentifier

Let name be the result of evaluating NonAttributeQualifiedIdentifier

Return name

14.2 Primary expressions

Syntax

PrimaryExpression

 null

 true

 false

 Number

 String

 this

 RegularExpression

 QualifiedIdentifier

 XMLInitializer

 ReservedNamespace

 ParenListExpression

 ArrayInitialiser

 ObjectInitialiser

 FunctionExpression

A PrimaryExpression can be used wherever a FullPostfixExpression or a FullNewSubExpression can
be used. This includes object creation, property access, and function invocation expressions.

Verifition

PrimaryExpression : null

Return the type Null

PrimaryExpression : true

PrimaryExpression : false

Return the type Boolean

PrimaryExpression : Number

Return the type Number

PrimaryExpression : String

Return the type String

PrimaryExpression : RegularExpression

Return the type RegExp

PrimaryExpression : QualifiedIdentifier

Return the result of verifying QualifiedIdentifier

PrimaryExpression : XMLInitialiser

PrimaryExpression : ReservedNamespace

PrimaryExpression : ParenListExpression

PrimaryExpression : ArrayInitialiser

PrimaryExpression : ObjectInitialiser

PrimaryExpression : FunctionExpression

Return the result of verifying the non-terminal symbol on the right-hand side of the production

PrimaryExpression : this

Let frame be the immediately enclosing ParameterFrame

If frame is none

Throw a VerifyError

Return the result of typeOfThis(frame)

Evaluation

PrimaryExpression : null

Return the value null

PrimaryExpression : true

Return the value true

PrimaryExpression : false

Return the value false

PrimaryExpression : Number

Return the Number value produced by lexical analysis of Number

PrimaryExpression : String

Return the String value produced by lexical analysis of String

PrimaryExpression : this

Let frame be the immediately enclosing ParameterFrame

Return the value of this associated with frame

PrimaryExpression : RegularExpression

Return the RegExp result of evaluating the expression produced by lexical analysis of
RegularExpression

PrimaryExpression : QualifiedIdentifier

Let name be the result of evaluating QualifiedIdentifier

Let ref be an instance Reference(null,name,null)

Return ref

14.3 Reserved namespace expressions

Syntax

ReservedNamespace

 public

 private

 protected

 internal

Verification

ReservedNamespace : public

Return the value of type Namespace

ReservedNamespace : private

ReservedNamespace : protected

If ReservedNamespace is not enclosed in a ClassDefinition

Throw a VerifyError

Return the value of type Namespace

ReservedNamespace : internal

If ReservedNamespace is not enclosed in a PackageDefinition

Throw a VerifyError

Return the value of type Namespace

Evaluation

ReservedNamespace : public

Return the public namespace

ReservedNamespace : private

Return the private namespace of the enclosing class

ReservedNamespace : protected

Return the protected namespace of the enclosing class

ReservedNamespace : internal

Return the internal namespace of the enclosing package

14.4 Parenthesized expressions

Syntax

ParenExpression

 (AssignmentExpressionallowIn)

ParenListExpression

 ParenExpression

 (ListExpressionallowIn , AssignmentExpressionallowIn)

Verification

ParenExpression : (AssignmentExpressionallowIn)

Return the result of verifying AssignmentExpression

ParenListExpression : (ListExpressionallowIn , AssignmentExpressionallowIn)

Verify ListExpression

Return the result of verifying AssignmentExpression

Evaluation

ParenExpression : (AssignmentExpressionallowIn)

Return the result of evaluating AssignmentExpression

ParenListExpression : (ListExpressionallowIn , AssignmentExpressionallowIn)

Evaluate ListExpression

Let ref be the result of evaluating AssignmentExpression

Return the result of readReference(ref)

14.5 Function expression

Syntax

FunctionExpression

 function FunctionCommon

 function Identifier FunctionCommon

Verification

FunctionExpression : function FunctionCommon

FunctionExpression : function Identifier FunctionCommon

Return the result of verifying FunctionCommon

Evaluation

FunctionExpression : function FunctionCommon

Return the result of evaluating FunctionCommon

FunctionExpression : function Identifier FunctionCommon

Let obj be a new instance of Object

Push obj onto the scope chain

Let fun be the result of evaluating FunctionCommon

Let id be the result of evaluating Identifier

Add a property to obj with the name id and the value fun that is not writable and not deletable

Pop obj from the scope chain

Return fun

14.6 Object initialiser

Syntax

ObjectInitialiser

 { FieldList }

FieldList

 «empty»

 NonemptyFieldList

NonemptyFieldList

 LiteralField

 LiteralField , NonemptyFieldList

LiteralField

 FieldName : AssignmentExpressionallowIn

FieldName

 NonAttributeQualifiedIdentifier

 String

 Number

Verification

ObjectInitialiser : { FieldList }

Return the result of verifying FieldList

FieldList : empty

Do nothing

FieldList : NonemptyFieldList

Verify NonemptyFieldList

NonemptyFieldList : LiteralField

Verify LiteralField

NonemptyFieldList : LiteralField , NonemptyFieldList

Verify LiteralField

Verify NonemptyFieldList

LIteralField : FieldName : AssignmentExpression

Verify FieldName

Verify AssignmentExpression

FieldName : NonAttributeQualifiedIdentifier

Verify NonAttributeQualifiedIdentifier

FieldName : String

FieldName : Number

Do nothing

Evaluation

ObjectInitialiser : { FieldList }

Let obj be the result of creating a new Object instance

Return the result of evaluating FieldList with argument obj

FieldList : empty

Return the value of the argument obj

FieldList : NonemptyFieldList

Evaluate NonemptyFieldList with argument obj

NonemptyFieldList : LiteralField

Evaluate LiteralField with argument obj

NonemptyFieldList : LiteralField , NonemptyFieldList

Evaluate LiteralField with argument obj

Evaluate NonemptyFieldList with argument obj

LIteralField : FieldName : AssignmentExpression

Let name be the result of evaluating FieldName

Let ref be the result of evaluating AssignmentExpression

Let val be the value of referenceRead(ref)

Call objectWrite(obj,name,val)

FieldName : NonAttributeQualifiedIdentifier

Return the result of evaluating NonAttributeQualifiedIdentifier

FieldName : String

Return the value of String

FieldName : Number

Let num be the value of Number

Return the result of calling String(num)

14.7 Array initialiser

An array initialiser is an expression describing the initialisation of an Array object, written in a form
of a literal. It is a list of zero or more expressions, each of which represents an array element,
enclosed in square brackets. The elements need not be literals; they are evaluated each time the
array initialiser is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a
comma in the element list is not preceded by an AssignmentExpression (such as a comma at the
beginning or after another comma), the missing array element contributes to the length of the
Array and increases the index of subsequent elements. Elided array elements are not defined.

Syntax

ArrayInitialiser

 [ElementList]

ElementList

 «empty»

 LiteralElement

 , ElementList

 LiteralElement , ElementList

LiteralElement

 AssignmentExpressionallowIn

Verification

An ArrayInitialiser is verified by verifying all non-terminals on the right-hand side of each
production. The result of verifying an ArrayInitialiser is the type Array.

Evaluation

ArrayInitialiser expressions are evaluated as described in ECMA-262 edition 3.

14.8 XML initialisers

An XML initialiser is an expression describing the initialisation of an XML object, written in a form of
a literal. It may specify an XML element, an XML comment, an XML PI, or a CDATA section using
ordinary XML syntax. For XML elements, it provides the name, attributes and properties of an XML
object.

Syntax

XMLInitialiser

 XMLMarkup

 XMLElement

 < > XMLElementContent </ >

XMLElement

 < XMLTagContent XMLWhitespaceopt/>

 < XMLTagContent XMLWhitespaceopt> XMLElementContent </ XMLTagName
XMLWhitespaceopt>

XMLTagContent

 XMLTagName XMLAttributes

XMLTagName

 { Expression }

 XMLName

XMLAttributes

 XMLWhitespace { Expression }

 XMLAttribute XMLAttributes

 «empty»

XMLAttribute

 XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt { Expression }

 XMLWhitespace XMLName XMLWhitespaceopt = XMLWhitespaceopt XMLAttributeValue

XMLElementContent

 { Expression } XMLElementContent

 XMLMarkup XMLElementContent

 XMLText XMLElementContent

 XMLElement XMLElementContent

 «empty»

See the ECMAScript for XML (E4X) specification (ECMA-357 edition 2) for definitions of XMLMarkup,
XMLText, XMLName, XMLWhitespace and XMLAttributeValue.

Verification

An XMLInitialiser is verified by verifying all non-terminals on the right hand side of each production.
The result of verifying an XMLInitialiser is the type XML.

Evaluation

XMLInitialiser expressions are evaluated as described in ECMA-357 edition 2.

14.9 Super expression

SuperExpression limits the binding of a reference to a property of the base class of the current
method. The value of the operand must be an instance of the current class. If Arguments is
specified, its value is used as the base object of the limited reference. If no Arguments is specified,
the value of this is used as the base object.

Syntax

SuperExpression

 super

 super Arguments

SuperExpression may be used before a PropertyOperator in either a FullPostfixExpression or a
FullNewSubexpression.

super.f(a,b,c)
super(o).f(a,b,c)

Verification

SuperExpression : super

SuperExpression : super Arguments

Let frame be the immediately enclosing ParameterFrame

If frame is none

Throw a VerificationError

Let type be the result of typeOfThis(frame)

Let limit be type.super

If Arguments is specified and not empty

Let obj be the result verifying Arguments

Call verifyType(obj,limit)

Return the type limit

Evaluation

SuperExpression : super

SuperExpression : super Arguments

Let frame be the immediately enclosing ParameterFrame

Let this be the value of frame.this

Let type be the value of this.type

Let limit be type.super

If Arguments is empty or not specified

Let obj be the value of this

Else

Let obj be the result of evaluating Arguments

If obj.type is not a subtype of limit, then throw a TypeError

Let obj be a new instance LimitedBase(obj,limit)

Compatibility

ActionScript 2.0 supports only the first form of SuperExpression.

super.f(a,b,c)

This is equivalent to the following ActionScript 2.0 code:

this.constructor.prototype.__proto__.f.apply(this,arguments);

This differs from ActionScript 3.0 depending on the value of this, and whether the value of
constructor, prototoype or __proto__ has been modified.

The second form of SuperExpression is included for future compatibility and completeness.

14.10 Postfix Expressions

Syntax

PostfixExpression

 FullPostfixExpression

 ShortNewExpression

A PostfixExpression may be used in a UnaryExpression, before ++ or -- in another PostfixExpression
on the left-hand side of an AssignmentExpression, or as a ForInBinding.

FullPostfixExpression

 PrimaryExpression

 FullNewExpression

 FullPostfixExpression PropertyOperator

 SuperExpression PropertyOperator

 FullPostfixExpression Arguments

 FullPostfixExpression QueryOperator

 PostfixExpression [no line break] ++

 PostfixExpression [no line break] --

A FullPostfixExpression may be used as a PostfixExpression, or before a PropertyOperator or an
Arguments in another FullPostfixExpression.

Verification

FullPostfixExpression : PrimaryExpression

FullPostfixExpression : FullNewExpression

Return the result of verifying the right hand side of the production

FullPostfixExpression : FullPostfixExpression PropertyOperator

Let base be the result of verifying FullPostfixExpression

Let name be result of verifying PropertyOperator

Return the result of referenceType(base,name,null,false)

FullPostfixExpression : SuperExpression PropertyOperator

Let base be the result of verifying SuperExpression

Let name be result of verifying PropertyOperator

Return the result of referenceType(base.this,name,base.limit,false)

FullPostfixExpression : FullPostfixExpression Arguments

Let fun be the result of verifying FullPostfixExpression

Let args be the result of verifying Arguments

If isStrict()

Call verifyType(fun,Function)

Let types be the value fun.types

If args.length is not equal to types.length, throw a VerifyError exception

For each type in args, call verifyType(args[i],types[i])

Return the result of resultType(fun)

FullPostfixExpression : FullPostfixExpression QueryOperator

Let type be the result of verifying FullPostfixExpression

Return the result of verifying QueryOperator passing the argument type

FullPostfixExpression : PostfixExpression [no line break] ++

FullPostfixExpression : PostfixExpression [no line break] --

Let type be the result of verifying PostfixExpression

Call verifyType(type,Number)

Return type Number

Evaluation

FullPostfixExpression : PrimaryExpression

Return the result of evaluating PrimaryExpression

FullPostfixExpression : FullNewExpression

Return the result of evaluating FullNewExpression

FullPostfixExpression : FullPostfixExpression PropertyOperator

Let ref be the result of evaluating FullPostfixExpression

Let base be the result of readReference(ref)

Let name be the result of evaluating PropertyOperator

Return the new instance Reference(base,name,null,false)

FullPostfixExpression : SuperExpression PropertyOperator

Let limited be the result of evaluating SuperExpression

Return the new instance Reference(limited.this,name,limited.type,false)

FullPostfixExpression : FullPostfixExpression QueryOperator

Let ref be the result of evaluating FullPostfixExpression

Let obj be the result of readReference(ref)

Return the result of evaluating QueryOperator passing the argument obj

FullPostfixExpression : FullPostfixExpression Arguments

Let ref be the result of evaluating FullPostfixExpression

Let args be the result of evaluating Arguments

Return the result of callReference(ref,args)

FullPostfixExpression : PostfixExpression [no line break] ++

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Let num1 be the result of Number(val)

Let num2 be the result of evaluating the expression num1 + 1

Call writeReference(ref,num2)

Return num1

FullPostfixExpression : PostfixExpression [no line break] -

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Let num1 be the result of Number(val)

Let num2 be the result of evaluating the expression num1 - 1

Call writeReference(ref,num2)

Return num1

14.11 New expressions

A new expression results in the invocation of the intrinsic construct method of the value computed
by the expression that follows the new keyword. Arguments, if specified, are passed to the
construct method. If no arguments are specified, the parentheses may be omitted.

Syntax

FullNewExpression

 new FullNewSubexpression Arguments

A FullNewExpression may be used as a FullPostfixExpression, or as a FullNewSubexpression.

FullNewSubexpression

 PrimaryExpression

 FullNewExpression

 FullNewSubexpression PropertyOperator

 SuperExpression PropertyOperator

A FullNewSubexpression may be used between the new keyword and the Arguments in a
FullNewExpression, before a PropertyOperator in another FullNewSubexpression, or as a
ShortNewSubexpression.

ShortNewExpression

 new ShortNewSubexpression

A ShortNewExpression may be used as a PostfixExpression, or as a ShortNewSubexpression (that
is, after the new keyword in another ShortNewExpression.)

ShortNewSubexpression

 FullNewSubexpression

 ShortNewExpression

A ShortNewSubexpression may be used after the new keyword in a ShortNewExpression.

Verification

FullNewExpression : new FullNewSubexpression Arguments

Let fun be the result of verifying FullNewSubexpression

Let args be the result of evaluating Arguments

If isStrict()

Call verifyType(fun,Function)

Let types be the value fun.types

If args.length is not equal to types.length, throw a VerifyError exception

For each type in args, call verifyType(args[i],types[i])

Return the result of calling resultType(fun,new)

FullNewSubexpression : PrimaryExpression

FullNewSubexpression : FullNewExpression

Return the result of verifying the non-terminal symbol on the right-hand side of the production

FullNewSubexpression : FullNewSubexpression PropertyOperator

Let base be the result of verifying FullNewSubexpression

Let name be the result of evaluating PropertyOperator

Return the result of calling propertyType(base,name,null,false)

FullNewSubexpression : SuperExpression PropertyOperator

Let limited be the result of evaluating SuperExpression

Let name be the result of evaluating PropertyOperator

Return the result of calling propertyType (limited.this,name,limited.type,false)

ShortNewExpression : new ShortNewSubexpression

Let ref be the result of verifying ShortNewSubexpression

Re turn the result of calling resultType(fun,new)

ShortNewSubexpression : FullNewSubexpression

ShortNewSubexpression : ShortNewExpression

Return the result of verifying the non-terminal symbol on the right-hand side of the production

Evaluation

FullNewExpression : new FullNewSubexpression Arguments

Let ref be the result of evaluating FullNewSubexpression

Let args be the result of evaluating Arguments

Return the result of constructReference(ref,args)

FullNewSubexpression : PrimaryExpression

Return the result of evaluating PrimaryExpression

FullNewSubexpression : FullNewExpression

Return the result of evaluating FullNewExpression

FullNewSubexpression : FullNewSubexpression PropertyOperator

Let ref be the result of evaluating FullNewSubexpression

Let base be the result of readReference(ref)

Let name be the result of evaluating PropertyOperator

Return the new instance Reference(base,name,null,false)

FullNewSubexpression : SuperExpression PropertyOperator

Let limited be the result of evaluating SuperExpression

Return the new instance Reference(limited.this,name,limited.type)

ShortNewExpression : new ShortNewSubexpression

Let ref be the result of evaluating ShortNewSubexpression

Return the result of constructReference(ref,null)

ShortNewSubexpression : FullNewSubexpression

Return the result of evaluating FullNewSubexpression

ShortNewSubexpression : ShortNewExpression

Return the result of evaluating ShortNewExpression

14.12 Property accessors

Syntax

PropertyOperator

 . QualifiedIdentifier

 Brackets

Brackets

 [ListExpressionallowIn]

Verification

PropertyOperator : . QualifiedIdentifier

Return the result of verifying QualifiedIdentifier

PropertyOperator : Brackets

Return the result of verifying Brackets

Brackets : [ListExpression]

Verify ListExpression

Return the type Name

Evaluation

PropertyOperator : . QualifiedIdentifier

Return the result of evaluating QualifiedIdentifier

PropertyOperator : Brackets

Return the result of evaluating Brackets

Brackets : [ListExpression]

Let val be the result of evaluating ListExpression

If val is of type Name

Let name be the set of names consisting of val

Else

Let str be the result of calling String(val)

Let namespaces be the result of calling openNamespaces(ctx)

Let name be the value of makeMultiname(namespaces,str)

Return name

14.13 Query operators

Syntax

QueryOperator

 .. QualifiedIdentifier

 . (ListExpressionallowIn)

Verification

QueryOperator : .. QualifiedIdentifier

Let type be a named argument to this verifier

Call verifyType(type,XML)

Verify QualifiedIdentifier

Return type XMLList

QueryOperator: . (ListExpression)

Let type be a named argument to this verifier

Call verifyType(type,XML)

Verify ListExpression

Return type XMLList

Evaluation

QueryOperator expressions are evaluated as described in the E4X specification.

14.14 Call expressions

Syntax

Arguments

 ()

 (ListExpressionallowIn)

ArgumentListβ

 AssignmentExpressionβ

 ArgumentListβ , AssignmentExpressionβ

Verification

Arguments : ()

Return an empty array of types

Arguments : (ArgumentList)

Let argTypes be an empty array of types

Verify ArgumentList passing the argument argTypes

Return argTypes

ArgumentList : AssignmentExpression

Let argTypes be a named argument to this verifier

Let type be the result of verifying AssignmentExpression

Call push(argTypes ,type)

ArgumentList : ArgumentList , AssignmentExpression

Let args be the result of evaluating ArgumentList with argument argTypes

Let type be the result of evaluating AssignmentExpression

Call push(argTypes ,type)

Evaluation

Arguments : ()

Return an empty Array

Arguments : (ArgumentList)

Let args be an empty Array

Evaluate ArgumentList passing the argument args

ArgumentList : AssignmentExpression

Let val be the result of evaluating AssignmentExpression

Call push(args,val)

Return

ArgumentList : ArgumentList , AssignmentExpression

Evaluate ArgumentList passing the argument args

Let val be the result of evaluating AssignmentExpression

Call push(args,val)

Return

14.15 Unary expressions

Syntax

UnaryExpression

 PostfixExpression

 delete PostfixExpression

 void UnaryExpression

 typeof UnaryExpression

 ++ PostfixExpression

 -- PostfixExpression

 + UnaryExpression

 - UnaryExpression

 - NegatedMinLong

 ~ UnaryExpression

 ! UnaryExpression

A UnaryExpression may be used where ever a MultiplicativeExpression may be used and in another
UnaryExpression after the void or typeof keywords or after the +, -, ~, and ! punctuators.

Verification

UnaryExpression : PostfixExpression

Return the result of verifying PostfixExpression

UnaryExpression : delete PostfixExpression

Verify PostfixExpression

Return the type Boolean

UnaryExpression : void UnaryExpression

Verify UnaryExpression

Return the type void

UnaryExpression : typeof UnaryExpression

Verify UnaryExpression

Return the type String

UnaryExpression : ++ PostfixExpression

UnaryExpression : -- PostfixExpression

UnaryExpression : + PostfixExpression

UnaryExpression : - PostfixExpression

Let type be the result of verifying PostfixExpression

Call verifyType(type,int)

Return the type Number

UnaryExpression : - NegatedMinLong

Return the type Number

UnaryExpression : ~ UnaryExpression

Let type be the result of verifying UnaryExpression

Call verifyType(type,int)

Return the type int

UnaryExpression : ! UnaryExpression

Let type be the result of verifying UnaryExpression

Call verifyType(type,Boolean)

Return the type Boolean

Evaluation

UnaryExpression : PostfixExpression

Return the result of evaluating PostfixExpression

UnaryExpression : delete PostfixExpression

Let ref be the result of evaluating PostfixExpression

If ref is of type Reference

Return the result of calling deleteReference(ref)

Else

Return true

UnaryExpression : void UnaryExpression

Let ref be the result of evaluating UnaryExpression

Call readReference(ref)

Return undefined

UnaryExpression : typeof UnaryExpression

Let ref be the result of evaluating UnaryExpression

If ref is a Reference and ref.base is null

Let val be the value undefined

Else

Let val be the result of readReference(ref)

Return the result of typeOfString(val)

UnaryExpression : ++ PostfixExpression

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Let num1 be the result of Number(val)

Let num2 be the result of calling add(num1,1)

Call writeReference(ref,num2)

Return num2

UnaryExpression : -- PostfixExpression

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Let num1 be the result of Number(val)

Let num2 be the result of evaluating the expression subtract(num1,1)

Call writeReference(ref,num2)

Return num2

UnaryExpression : + PostfixExpression

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Return the result of calling Number(val)

UnaryExpression : - PostfixExpression

Let ref be the result of evaluating PostfixExpression

Let val be the result of readReference(ref)

Let num be the result of Number(val)

If num == NaN, then return NaN

Return the result of the expression multiply(-1,num)

UnaryExpression : - NegatedMinLong

Return the Number value -2E63

UnaryExpression : ~ UnaryExpression

Let ref be the result of evaluating UnaryExpression

Let val be the result of readReference(ref)

Let int32 be the result of int(val)

Return the result of bitwiseNot(int32)

UnaryExpression : ! UnaryExpression

Let ref be the result of evaluating UnaryExpression

Let val be the result of readReference(ref)

Let bool be the result of Boolean(val)

If bool == true

Return false

Return true

14.16 Binary expressions

The binary expressions are left associative and have relative precedence as specified in the
grammar: LogicalOrExpression has the lowest precedence and MultiplicativeExpression has the

grammar: LogicalOrExpression has the lowest precedence and MultiplicativeExpression has the
highest precedence.

14.16.1 Multiplicative expressions

Syntax

MultiplicativeExpression

 UnaryExpression

 MultiplicativeExpression * UnaryExpression

 MultiplicativeExpression / UnaryExpression

 MultiplicativeExpression % UnaryExpression

Verification

MultiplicativeExpression : UnaryExpression

Return the result of verifying UnaryExpression

MultiplicativeExpression : MultiplicativeExpression * UnaryExpression

MultiplicativeExpression: MultiplicativeExpression / UnaryExpression

MultiplicativeExpression: MultiplicativeExpression % UnaryExpression

Let x be the result of evaluating MultiplicativeExpression

Call verifyType(x,Number)

Let y be the result of evaluating UnaryExpression

Call verifyType(y,Number)

Return type Number

Evaluation

MultiplicativeExpression : UnaryExpression

Return the result of evaluating UnaryExpression

MultiplicativeExpression : MultiplicativeExpression * UnaryExpression

Let ref be the result of evaluating MultiplicativeExpression

Let x be the result of calling readReference(ref)

Let ref be the result of evaluating UnaryExpression

Let y be the result of readReference(ref)

Return the result of calling multiply(x,y)

MultiplicativeExpression: MultiplicativeExpression / UnaryExpression

Let ref be the result of evaluating MultiplicativeExpression

Let x be the result of calling readReference(ref)

Let ref be the result of evaluating UnaryExpression

Let y be the result of readReference(ref)

Return the result of calling divide(x,y)

MultiplicativeExpression: MultiplicativeExpression % UnaryExpression

Let ref be the result of evaluating MultiplicativeExpression

Let x be the result of calling readReference(ref)

Let ref be the result of evaluating UnaryExpression

Let y be the result of readReference(ref)

Return the result of calling remainder(x,y)

14.16.2 Additive expressions

Syntax

AdditiveExpression

 MultiplicativeExpression

 AdditiveExpression + MultiplicativeExpression

 AdditiveExpression - MultiplicativeExpression

Verification

AdditiveExpression: MultiplicativeExpression

Return the result of evaluating MultiplicativeExpression

AdditiveExpression: MultiplicativeExpression + UnaryExpression

Let x be the result of verifying MultiplicativeExpression

Let y be the result of verifying UnaryExpression

Return type *

AdditiveExpression: MultiplicativeExpression - UnaryExpression

Let x be the result of verifying MultiplicativeExpression

Call verifyType(x,Number)

Let y be the result of verifying UnaryExpression

Call verifyType(y,Number)

Return type Number

Evaluation

AdditiveExpression: MultiplicativeExpression

Return the result of evaluating MultiplicativeExpression

AdditiveExpression: MultiplicativeExpression + UnaryExpression

Let ref be the result of evaluating MultiplicativeExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating UnaryExpression

Let y be the result of readReference(ref)

Return the result of plus(x,y)

AdditiveExpression: MultiplicativeExpression - UnaryExpression

Let ref be the result of evaluating MultiplicativeExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating UnaryExpression

Let y be the result of readReference(ref)

Return the result of minus(x,y)

14.16.3 Shift expressions

Syntax

ShiftExpression

 AdditiveExpression

 ShiftExpression << AdditiveExpression

 ShiftExpression >> AdditiveExpression

 ShiftExpression >>> AdditiveExpression

Verification

ShiftExpression : AdditiveExpression

Return the result of verifying AdditiveExpression

ShiftExpression : ShiftExpression << AdditiveExpression

ShiftExpression : ShiftExpression >> AdditiveExpression

ShiftExpression : ShiftExpression >>> AdditiveExpression

Let x be the result of verifying ShiftExpression

Call verifyType(x,Number)

Let y be the result of verifying AdditiveExpression

Call verifyType(y,Number)

Return the type Number

Evaluation

ShiftExpression : AdditiveExpression

Return the result of evaluating AdditiveExpression

ShiftExpression : ShiftExpression << AdditiveExpression

Let ref be the result of evaluating ShiftExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating AdditiveExpression

Let y be the result of readReference(ref)

Return the result of shiftLeft(x,y)

ShiftExpression : ShiftExpression >> AdditiveExpression

Let ref be the result of evaluating ShiftExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating AdditiveExpression

Let y be the result of readReference(ref)

Return the result of shiftRight(x,y)

ShiftExpression : ShiftExpression >>> AdditiveExpression

Let ref be the result of evaluating ShiftExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating AdditiveExpression

Let y be the result of readReference(ref)

Return the result of shiftRightUnsigned(x,y)

14.16.4 Relational expressions

Syntax

RelationalExpressionallowIn

 ShiftExpression

 RelationalExpressionallowIn< ShiftExpression

 RelationalExpressionallowIn> ShiftExpression

 RelationalExpressionallowIn<= ShiftExpression

 RelationalExpressionallowIn>= ShiftExpression

 RelationalExpressionallowInin ShiftExpression

 RelationalExpressionallowIninstanceof ShiftExpression

 RelationalExpressionallowInis ShiftExpression

 RelationalExpressionallowInas ShiftExpression

RelationalExpressionnoIn

 ShiftExpression

 RelationalExpressionnoIn< ShiftExpression

 RelationalExpressionnoIn> ShiftExpression

 RelationalExpressionnoIn<= ShiftExpression

 RelationalExpressionnoIn>= ShiftExpression

 RelationalExpressionnoIninstanceof ShiftExpression

 RelationalExpressionnoInis ShiftExpression

 RelationalExpressionnoInas ShiftExpression

The noIn version of RelationalExpression exists to avoid ambiguity between the in operator in a
relational expression and the in operator in a for statement.

Verification

RelationalExpression : ShiftExpression

Return the result of verifying ShiftExpression

RelationalExpression : RelationalExpression < ShiftExpression

RelationalExpression : RelationalExpression > ShiftExpression

RelationalExpression : RelationalExpression <= ShiftExpression

RelationalExpression : RelationalExpression >= ShiftExpression

RelationalExpression : RelationalExpression in ShiftExpression

RelationalExpression : RelationalExpression instanceof ShiftExpression

Let x be the result of verifying RelationalExpression

Let y be the result of verifying ShiftExpression

Return the type Boolean

RelationalExpression : RelationalExpression is ShiftExpression

Verify RelationalExpression

Let type be the result of verifying ShiftExpression

Call verifyType(type,Type)

Return the type Boolean

RelationalExpression : RelationalExpression as ShiftExpression

Verify RelationalExpression

Let type be the result of verifying ShiftExpression

Call verifyType(type,Type)

Return the type

Evaluation

RelationalExpression : ShiftExpression

Return the result of evaluating ShiftExpression

RelationalExpression : RelationalExpression < ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of lessThan(x,y)

RelationalExpression : RelationalExpression > ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of lessThan(y,x)

RelationalExpression : RelationalExpression <= ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of lessThanOrEquals(x,y)

RelationalExpression : RelationalExpression >= ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of lessThanOrEquals(y,x)

RelationalExpression : RelationalExpression in ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of hasProperty(x,y)

RelationalExpression : RelationalExpression instanceof ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of instanceof(x,y)

RelationalExpression : RelationalExpression is ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of isType(x,y)

RelationalExpression : RelationalExpression as ShiftExpression

Let ref be the result of evaluating RelationalExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating ShiftExpression

Let y be the result of readReference(ref)

Return the result of asType(x,y)

14.16.5 Equality expressions

Syntax

EqualityExpressionβ

 RelationalExpressionβ

 EqualityExpressionβ== RelationalExpressionβ

 EqualityExpressionβ!= RelationalExpressionβ

 EqualityExpressionβ=== RelationalExpressionβ

 EqualityExpressionβ!== RelationalExpressionβ

The β notation signifies that both the allowIn and noIn variants are included.

Verification

EqualityExpression : RelationalExpression

Return the result of verifying RelationalExpression

EqualityExpression : EqualityExpression == RelationalExpression

EqualityExpression : EqualityExpression != RelationalExpression

EqualityExpression : EqualityExpression === RelationalExpression

EqualityExpression : EqualityExpression !== RelationalExpression

Let x be the result of verifying EqualityExpression

Let y be the result of verifying RelationalExpression

If isStrict() and x is not a subtype of y and y is not a subtype of x

If x is final or y is not an interface, then throw a type error

If y is final or x is not an interface, then throw a type error

Return type Boolean

Evaluation

EqualityExpression : RelationalExpression

Return the result of evaluating RelationalExpression

EqualityExpression : EqualityExpression == RelationalExpression

Let ref be the result of evaluating EqualityExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating RelationalExpression

Let y be the result of readReference(ref)

Return the result of equals(x,y)

EqualityExpression : EqualityExpression != RelationalExpression

Let ref be the result of evaluating EqualityExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating RelationalExpression

Let y be the result of readReference(ref)

Return the result of not equals(x,y)

EqualityExpression : EqualityExpression === RelationalExpression

Let ref be the result of evaluating EqualityExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating RelationalExpression

Let y be the result of readReference(ref)

Return the result of strictEquals(x,y)

EqualityExpression : EqualityExpression !== RelationalExpression

Let ref be the result of evaluating EqualityExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating RelationalExpression

Let y be the result of readReference(ref)

Return the result of not strictEquals(x,y)

14.16.6 Bitwise expressions

Syntax

BitwiseAndExpressionβ

 EqualityExpressionβ

 BitwiseAndExpressionβ& EqualityExpressionβ

BitwiseXorExpressionβ

 BitwiseAndExpressionβ

 BitwiseXorExpressionβ^ BitwiseAndExpressionβ

BitwiseOrExpressionβ

 BitwiseXorExpressionβ

 BitwiseOrExpressionβ| BitwiseXorExpressionβ

Verification

BitwiseAndExpression : EqualityExpression

Return the result of verifying EqualityExpression

BitwiseAndExpression : BitwiseAndExpression & EqualityExpression

Let x be the result of evaluating BitwiseAndExpression

Call verifyType(x,Number)

Let y be the result of evaluating EqualityExpression

Call verifyType(y,Number)

Return the type Number

BitwiseXorExpression : BitwiseAndExpression

Return the result of evaluating BitwiseAndExpression

BitwiseXorExpression : BitwiseXorExpression ^ BitwiseAndExpression

Let x be the result of evaluating BitwiseXorExpression

Call verifyType(x,Number)

Let y be the result of evaluating BitwiseAndExpression

Call verifyType(y,Number)

Return the type Number

BitwiseOrExpression : BitwiseXorExpression

Return the result of evaluating BitwiseXorExpression

BitwiseOrExpression : BitwiseOrExpression | BitwiseXorExpression

Let x be the result of evaluating BitwiseOrExpression

Call verifyType(x,Number)

Let y be the result of evaluating BitwiseXorExpression

Call verifyType(y,Number)

Return the type Number

Evaluation

BitwiseAndExpression : EqualityExpression

Return the result of evaluating EqualityExpression

BitwiseAndExpression : BitwiseAndExpression & EqualityExpression

Let ref be the result of evaluating BitwiseAndExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating EqualityExpression

Let y be the result of readReference(ref)

Return the result of bitwiseAnd(x,y)

BitwiseXorExpression : BitwiseAndExpression

Return the result of evaluating BitwiseAndExpression

BitwiseXorExpression : BitwiseXorExpression ^ BitwiseAndExpression

Let ref be the result of evaluating BitwiseXorExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating BitwiseAndExpression

Let y be the result of readReference(ref)

Return the result of bitwiseXor(x,y)

BitwiseOrExpression : BitwiseXorExpression

Return the result of evaluating BitwiseXorExpression

BitwiseOrExpression : BitwiseOrExpression | BitwiseXorExpression

Let ref be the result of evaluating BitwiseOrExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating BitwiseXorExpression

Let y be the result of readReference(ref)

Return the result of bitwiseOr(x,y)

14.16.7 Logical expressions

Syntax

LogicalAndExpressionβ

 BitwiseOrExpressionβ

 LogicalAndExpressionβ&& BitwiseOrExpressionβ

LogicalOrExpressionβ

 LogicalAndExpressionβ

 LogicalOrExpressionβ|| LogicalXorExpressionβ

Verification

LogicalAndExpression: BitwiseOrExpression

Return the result of verifying BitwiseOrExpression

LogicalAndExpression: LogicalAndExpression && BitwiseOrExpression

Let x be the result of evaluating LogicalAndExpression

Let y be the result of evaluating BitwiseOrExpression

Return the type *

LogicalOrExpression : LogicalAndExpression

Return the result of evaluating LogicalAndExpression

LogicalOrExpression : LogicalOrExpression || LogicalOrExpression

Let x be the result of evaluating LogicalOrExpression

Let y be the result of evaluating LogicalOrExpression

Return the type *

Evaluation

LogicalAndExpression: BitwiseOrExpression

Return the result of evaluating BitwiseOrExpression

LogicalAndExpression: LogicalAndExpression && BitwiseOrExpression

Let ref be the result of evaluating LogicalAndExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating BitwiseOrExpression

Let y be the result of readReference(ref)

Return the result of logicalAnd(x,y)

LogicalOrExpression : LogicalAndExpression

Return the result of evaluating LogicalAndExpression

LogicalOrExpression : LogicalOrExpression || LogicalOrExpression

Let ref be the result of evaluating LogicalOrExpression

Let x be the result of readReference(ref)

Let ref be the result of evaluating LogicalOrExpression

Let y be the result of readReference(ref)

Return the result of logicalOr(x,y)

14.17 Conditional expressions

Syntax

ConditionalExpressionβ

 LogicalOrExpressionβ

 LogicalOrExpressionβ? AssignmentExpressionβ: AssignmentExpressionβ

A ConditionalExpression may be used where ever an AssignmentExpression may be used.

y = true ? x = true : x = false

Verification

ConditionalExpression : LogicalOrExpression

Return the result of verifying LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

Verify all non-terminal symbols on the right-hand side of the production

Return type *

Evaluation

ConditionalExpression : LogicalOrExpression

Return the result of evaluating LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

Let ref be the result of evaluating LogicalOrExpression

Let val be the result of readReference(ref)

If Boolean(val) is equal to true

Return the result of evaluating the first AssignmentExpression

Else

Return the result of evaluating the second AssignmentExpression

14.18 Non-assignment expressions

Syntax

NonAssignmentExpressionβ

 LogicalOrExpressionβ

 LogicalOrExpressionβ? NonAssignmentExpressionβ: NonAssignmentExpressionβ

A NonAssignmentExpression may be used where ever a TypeExpression may be used.

var x : hintString ? String : Number

Verification

NonAssignmentExpression : LogicalOrExpression

Return the result of verifying LogicalOrExpression

ConditionalExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

Verify all non-terminal symbols on the right-hand side of the production

Return type *

Evaluation

NonAssignmentExpression : LogicalOrExpression

Return the result of evaluating LogicalOrExpression

NonAssignmentExpression : LogicalOrExpression ? AssignmentExpression : AssignmentExpression

Let ref be the result of evaluating LogicalOrExpression

Let val be the result of readReference(ref)

If Boolean(val) is equal to true

Return the result of evaluating the first AssignmentExpression

Else

Return the result of evaluating the second AssignmentExpression

14.19 Assignment expressions

Syntax

AssignmentExpressionβ

 ConditionalExpressionβ

 PostfixExpression = AssignmentExpressionβ

 PostfixExpression CompoundAssignment AssignmentExpressionβ

 PostfixExpression LogicalAssignment AssignmentExpressionβ

CompoundAssignment

 *=

 /=

 %=

 +=

 -=

 <<=

 >>=

 >>>=

 &=

 ^=

 |=

LogicalAssignment

 &&=

 ^^=

 ||=

Verification

AssignmentExpression : PostfixExpression = AssignmentExpression

AssignmentExpression : PostfixExpression CompoundAssignment AssignmentExpression

AssignmentExpression : PostfixExpression LogicalAssignment AssignmentExpression

Let lhstype be the result of verifying PostfixExpression

Let rhstype be the result of verifying AssignmentExpression

Call verifyType(rhstype,lhstype)

Return rhstype

Evaluation

AssignmentExpression : PostfixExpression = AssignmentExpression

Let ref1 be the result of verifying PostfixExpression

Let ref2 be the result of verifying AssignmentExpression

Let val be the result of calling readReference(ref2)

Call writeReference(ref1,val)

Return val

AssignmentExpression : PostfixExpression CompoundAssignment AssignmentExpression

AssignmentExpression : PostfixExpression LogicalAssignment AssignmentExpression

Let ref1 be the result of verifying PostfixExpression

Let ref2 be the result of verifying AssignmentExpression

Let val1 be the result of calling readReference(ref1)

Let val2 be the result of calling readReference(ref2)

Let val be the result of calling the operator method that corresponds to CompoundAssignment
or LogicalAssignment with arguments val1 and val2

Call writeReference(ref1,val)

Return val

14.20 List expressions

Syntax

ListExpressionβ

 AssignmentExpressionβ

 ListExpressionβ, AssignmentExpressionβ

ListExpression may be used as an ExpressionStatement, after the case keyword in a CaseLabel,
after the in keyword in a ForInStatement, as a ForInitializer, as an OptionalExpression, after the
return keyword in a ReturnStatement, after the throw keyword in a ThrowStatement, in a
ParenthesizedListExpression, in a Brackets, or in an Arguments.

Verification

ListExpression : AssignmentExpression

Return the result of verifying AssignmentExpression

ListExpression : ListExpression , AssignmentExpression

Verify ListExpression

Return the result of verifying AssignmentExpression

Evaluation

ListExpression : AssignmentExpression

Let ref be the result of evaluating AssignmentExpression

Return the result of readReference(ref)

ListExpression : ListExpression , AssignmentExpression

Evaluate ListExpression

Let ref be the result of evaluating AssignmentExpression

Return the result of readReference(ref)

14.21 Type expressions

Syntax

TypeExpressionβ

 NonAssignmentExpressionβ

TypeExpression is used in a typed identifier definition, result type definition, and extends and
implements declarations of classes and interfaces.

var x : String
function f() : Number { return y }
class A extends B implements C, D {}

Verification

TypeExpression : AssignmentExpression

If AssignmentExpression consists of the identifier *

Return type *

Return the result of verifying AssignmentExpression

Evaluation

TypeExpression : AssignmentExpression

Let ref be the result of evaluating AssignmentExpression

Let val be the result of readReference(ref)

If isType(val,Type) equals false

Throw TypeError

Return val

15 Statements

ω = {abbrev, noShortIf, full}

Syntax

Statementω

 SuperStatement Semicolonω

 Block

 IfStatementω

 SwitchStatement

 DoStatement Semicolonω

 WhileStatementω

 ForStatementwω

 WithStatementω

 ContinueStatement Semicolonω

 BreakStatement Semicolonω

 ReturnStatement Semicolonω

 ThrowStatement Semicolonω

 TryStatement

 ExpressionStatement Semicolonω

 LabeledStatementω

 DefaultXMLNamespaceStatement

Substatementω

 EmptyStatement

 Statementω

 SimpleVariableDefinition Semicolonω

Substatements

 «empty»

 SubstatementsPrefix Substatementabbrev

SubstatementsPrefix

 «empty»

 SubstatementsPrefix Substatementfull

Semicolonabbrev

 ;

 VirtualSemicolon

 «empty»

SemicolonnoShortIf

 ;

 VirtualSemicolon

 «empty»

Semicolonfull

 ;

 VirtualSemicolon

15.1 Empty statement

Syntax

EmptyStatement

 ;

Verification

EmptyStatment : ;

Do nothing

Evaluation

Return the value of named argument cv

15.2 Expression statement

Syntax

ExpressionStatement

 [lookahead !{ function, { }] ListExpressionallowIn

Verification

ExpressionStatement : ListExpression

Verify ListExpression

Evaluation

ExpressionStatement : ListExpression

Let ref be the result of evaluating ListExpression

Return the result of readReference(ref)

15.3 Super statement

A SuperStatement causes the constructor of the immediate base class to be called. If no
SuperStatement is specified, the default constructor of the base class is called. Unlike in Java, a
SuperStatement may be used anywhere in the body of the constructor before an instance property
is accessed. It is a compile error to use more than one SuperStatement in a constructor.

Syntax

SuperStatement

 super Arguments

A SuperStatement may only be used inside a constructor. It is a syntax error to use a
SuperStatement anywhere else in a program.

class B extends A {
 function B(x,y,z) {
 super(x,y)
 // other constructor code here
 }
}

Semantics

Compatibility

In ActionScript 2.0, a SuperStatement may be used anywhere in a program, except in a static
method of a class. It is equivalent to the following statement:

this.constructor.prototype.constructor.apply(this,arguments)

If used in a class instance function, it will call the class's constructor function using the current value
of this as the first argument. If used in global code, it will call the global object's class's super
constructor.

In ActionScript 3.0, a SuperStatement may only be used in an instance constructor. All other uses
will result in a syntax error. Also, if the number and types of Arguments is not compatible with
Parameters of the super constructor, the result is a runtime error.

15.4 Block statement

Syntax

Block

 { Directives }

15.5 Labeled statement

Syntax

LabeledStatementω

 Identifier : Substatementω

Verification

LabeledStatement : Substatement

Let breakTargets be the current set of possible targets of BreakStatements

Let target be the sequence of characters of Identifier

If target is a member of breakTargets, throw a SyntaxError

Add target to breakTargets by calling breakTargets.push(target)

Verify Substatement

Evaluation

LabeledStatement : Substatement

Try

Return the result of evaluating Substatement

Catch exception x if x is of type Break

Let label be a string value consisting of the same sequence of characters as Identifier

If x.target equals label, then return x.value

Throw x

Compatibility

ActionScript 2.0 does not allow LabeledStatements. This is a compatible change to the language.

15.6 Conditional statements

15.6.1 If statement

Syntax

IfStatementabbrev

 if ParenListExpression Substatementabbrev

 if ParenListExpression SubstatementnoShortIfelse Substatementabbrev

IfStatementfull

 if ParenListExpression Substatementfull

 if ParenListExpression SubstatementnoShortIfelse Substatementfull

IfStatementnoShortIf

 if ParenListExpression SubstatementnoShortIfelse SubstatementnoShortIf

Verification

IfStatement : if ParenListExpression Substatement

IfStatement : if ParenListExpression Substatement else Substatement

Verify the non-terminal symbols other right-hand side of the production

Evaluation

IfStatement : if ParenListExpression Substatement

Let cv be a named argument passed to this evaluator

Let ref be the result of evaluating ParenListExpression

Let obj be the result of readReference(ref)

If toBoolean(obj) has the value true

Return the result of evaluating Substatement

Return cv

IfStatement : if ParenListExpression Substatement1 else Substatement2

Let cv be a named argument passed to this evaluator

Let ref be the result of evaluating ParenListExpression

Let obj be the result of readReference(ref)

If toBoolean(obj) has the value true

Return the result of evaluating Substatement1 passing the argument cv

Return the result of evaluating Substatement2 passing the argument cv

15.6.2 Switch statement

Syntax

SwitchStatement

 switch ParenListExpression { CaseElements }

CaseElements

 «empty»

 CaseLabel

 CaseLabel CaseElementsPrefix CaseElementabbrev

CaseElementsPrefix

 «empty»

 CaseElementsPrefix CaseElementfull

CaseElementω

 Directiveω

 CaseLabel

CaseLabel

 case ListExpressionallowIn:

 default :

Semantics

Switch statements have the same syntax and semantics as defined in ECMA-262 edition 3.

15.7 Iteration statements

15.7.1 Do-while statement

Syntax

DoStatement

 do Substatementabbrev while ParenListExpression

Verification

DoStatement : do Substatement while ParenListExpression

Let continueTargets be the current set of possible targets of continue targets

Let breakTargets be the current set of possible targets of break targets

Add the label default to continueTargets by calling continueTargets.push(default)

Add the label default to breakTargets by calling breakTargets.push(default)

Verify Substatement

Verify ParenListExpression

Evaluation

DoStatement : do Substatement while ParenListExpression

Let cv be a named argument passed to this evaluator

Try

Loop

Try

Let cv be the result of evaluating Substatement with argument cv

Catch if exception x is of type Continue

If x.label is a member of the current loop's continueTargets, then cv = x.value

Throw x

Let ref be the result of evaluating ParenListExpression

Let obj be the result of readReference(ref)

If toBoolean(obj) is not true, then return cv

Catch if exception x is of type Break

If x.label equals default then return x.value

Throw x

15.17.2 While statement

Syntax

WhileStatementw

 While ParenListExpression Substatementw

Verification

WhileStatement : while ParenLIstExpression Substatement

Let continueTargets be the current set of possible targets of continue targets

Let breakTargets be the current set of possible targets of break targets

Add the label default to continueTargets by calling continueTargets.push(default)

Add the label default to breakTargets by calling breakTargets.push(default)

Verify ParenListExpression

Verify Substatement

Evaluation

DoStatement : do Substatement while ParenListExpression

Let cv be a named argument passed to this evaluator

Try

Loop

Let ref be the result of evaluating ParenListExpression

Let obj be the result of readReference(ref)

If toBoolean(obj) is not true, then return cv

Try

Let cv be the result of evaluating Substatement with argument cv

Catch if exception x is of type Continue

If x.label is a member of the current loop's continueTargets, then cv = x.value

Throw x

Catch if exception x is of type Break

If x.label equals default then return x.value

Throw x

15.7.3 For statements

Syntax

ForStatementw

 For (ForInitializer ; OptionalExpression ; OptionalExpression) Substatementw

 For (ForInBinding in ListExpressionallowIn) Substatementw

 For [no line break] each (ForInBinding in ListExpressionallowIn) Substatementw

ForInitializer

 «empty»

 ListExpressionnoIn

 VariableDefinitionnoIn

ForInBinding

 PostfixExpression

 VariableDefinitionKind VariableBindingnoIn

OptionalExpression

 ListExpressionallowIn

 «empty»

Semantics

For statements in edition 4 have the same syntax and semantics as defined in ECMA-262 edition 3
and E4X.

15.8 Continue statement

Syntax

ContinueStatement

 Continue

 continue [no line break] Identifier

Verification

ContinueStatement : continue

Let continueTargets be the current set of possible continue targets

If default is not a member of continueTargets, throw a SyntaxError

ContinueStatement : continue Identifier

Let continueTargets be the current set of possible continue targets

Let label be the sequence of characters of Identifier

If label is not a member of continueTargets, throw a SyntaxError

Evaluation

ContinueStatement : continue

Let cv be a named argument passed to this evaluator

Throw the exception Continue(cv,default)

ContinueStatement : continue Identifier

Let cv be a named argument passed to this evaluator

Let label be the sequence of characters of Identifier

Throw the exception Continue(cv,label)

Compatibility

ActionScript 2.0 does not allow the second form of ContinueStatement. This is a compatible change.

15.9 Break statement

Syntax

BreakStatement

 break

 break [no line break] Identifier

Verification

BreakStatement : break

Let breakTargets be the current set of possible break targets

If default is not a member of breakTargets, throw a SyntaxError

BreakStatement: break Identifier

Let breakTargets be the current set of possible continue targets

Let label be the sequence of characters of Identifier

If label is not a member of breakTargets, throw a SyntaxError

Evaluation

BreakStatement: break

Let cv be a named argument passed to this evaluator

Throw the exception Break(cv,default)

BreakStatement: break Identifier

Let cv be a named argument passed to this evaluator

Let label be the sequence of characters of Identifier

Throw the exception Break(cv,label)

Compatibility

ActionScript 2.0 does not allow the second form of BreakStatement. This is a compatible change.

15.10 With statement

Syntax

WithStatementw

 with ParenListExpression Substatementw

Semantics

With statements have the same syntax and semantics as defined in ECMA-262 edition 3.

15.11 Return statement

Syntax

ReturnStatement

 Return

 return [no line break] ListExpressionallowIn

Verification

ReturnStatement : return

Let env be the lexical environment

If env does not contain a parameter frame

Throw a SyntaxError exception

ReturnStatement : return ListExpression

Let env be the lexical environment

If env does not contain a parameter frame

Throw a SyntaxError exception

Let frame be the enclosing parameter frame

If frame does not allow a return value

Throw a SyntaxError exception

Verify ListExpression

Evaluation

BreakStatement: return

Throw the exception Return(undefined)

BreakStatement: return ListExpression

Let ref be the result of evaluating ListExpression

Let obj be the result of readReference(ref)

Throw the exception Return(obj)

15.12 Throw statement

Syntax

ThrowStatement

 throw [no line break] ListExpressionallowIn

Verification

ThrowStatement : throw ListExpression

Verify ListExpression

Evaluation

ThrowStatement : throw ListExpression

Let ref be the result of evaluating ListExpression

Let obj be the result of readReference(ref)

Throw the value obj

15.13 Try statement

Syntax

TryStatement

 try Block CatchClauses

 try Block CatchClausesOpt finally Block

CatchClausesOpt

 «empty»

 CatchClauses

CatchClauses

 CatchClause

 CatchClauses CatchClause

CatchClause

 catch (Parameter) Block

Verification

TryStatement : try Block CatchClauses

TryStatement : try Block1 CatchClausesOpt finally Block2

CatchClausesOpt : CatchClauses

CatchClauses : CatchClause

CatchClauses : CatchClauses CatchClause

Verify each of the non-terminal symbols on the right-hand side of the production

CatchClause : catch (Parameter) Block

Let frame be an empty activation frame

Let env be a copy of the current environment with frame added

Verify Parameter with the arguments env and frame

Verify Block with the argument env

Evaluation

TryStatement : try Block CatchClauses

Let cv be a named argument passed to this evaluator

Try

Let cv be the result of evaluating Block with argument cv

Catch if exception x is of type Object (note: excludes Return, Break and Continue exceptions)

Let val be the result evaluating CatchClauses

If val is not none, then return val

Throw x

TryStatement : try Block1 CatchClausesOpt finally Block2

Let cv be a named argument passed to this evaluator

Try

Let cv be the result of evaluating Block1 with argument cv

Catch if exception x is of type Object (note: excludes Return, Break and Continue exceptions)

Try

Let val be the result evaluating CatchClauses

If val is not none, then let e be have the value of x

Else let e be none

Catch if exception x

Let e have the value of x

Evaluate Block2

If e is not equal to none, then throw e, else return val

CatchClausesOpt : empty

Return none

CatchClausesOpt : CatchClauses

Return the result of evaluating CatchClauses

CatchClauses : CatchClause

Return the result of evaluating CatchClause

CatchClauses : CatchClauses CatchClause

Let val be the result of evaluating CatchClauses

If val is not equal to none, then return val

Return the result of evaluating CatchClause

CatchClause : catch (Parameter) Block

Let env be a copy of the current lexical environment

Let x be the named argument of this evaluator

Let T be the type of Parameter

Let name be the name of Parameter

If x is of type T

Let scope be instance of the activation frame of CatchClause

Add scope to the lexical environment env

Call writeProperty(scope,name,x)

Return the result of evaluating Block

Return none

15.14 Default XML namespace statement

Syntax

DefaultXMLNamespaceStatement

 default [no line break] xml [no line break] namespace = NonAssignmentExpressionb

Semantics

DefaultXMLNamespaceStatement sets the internal DefaultXMLNamespace property to the value of
NonAssignmentExpression. If a DefaultXMLNamespaceStatement appears in a function definition,
the default xml namespace associated with the corresponding function object is initially set to the
unnamed namespace.

16 Directives

Syntax

Directivew

 EmptyStatement

 Statementw

 AnnotatableDirectivew

 Attributes [no line break] AnnotatableDirectivew

 IncludeDirective Semicolonw

 ImportDirective Semicolonw

 UseDirective Semicolonw

AnnotatableDirectivew

 VariableDefinitionallowIn Semicolonw

 FunctionDefinition

 ClassDefinition

 InterfaceDefinition

 NamespaceDefinition Semicolonw

Directives

 «empty»

 DirectivesPrefix Directiveabbrev

DirectivesPrefix

 «empty»

 DirectivesPrefix Directivefull

16.1 Attributes

Syntax

Attributes

 Attribute

 AttributeCombination

AttributeCombination

 Attribute [no line break] Attributes

Attribute

 AttributeExpression

 ReservedNamespace

 [AssignmentExpressionallowIn]

AttributeExpression

 Identifier

 AttributeExpression PropertyOperator

An AttributeExpression may be used as an Attribute.

An Attribute of one kind or another may be used before any AnnotatableDirective.
AnnotatableDirectives include variable, function, class, interface, and namespace definitions.

Here is a complete list of reserved attribute names:

public
private
internal
protected
override
final
dynamic
native
static

Semantics

The meaning of an Attribute depends on its compile-time value and its usage. See the description of
the definitions being modified by the attribute.

16.2 Import directive

Syntax

ImportDirective

 import PackageName . *

 import PackageName . Identifier

ImportDirective may be used where ever a Directive or AnnotatableDirective can be used.

import a.b.*
import a.b.x

Semantics

An ImportDirective causes the simple and fully qualified names of one or more public definitions of
the specified package to be introduced into the current package. Simple names will be shadowed by
identical locally defined names. Ambiguous references to imported names result in runtime errors.

The wildcard form (import a.b.*) imports all public names in a package. The single name form
(import a.b.x) imports only the specified name.

The mechanism for locating and loading imported packages is implementation defined.

Compatibility

The ActionScript 2.0 behavior of raising an error if there are two classes with the same simple name
being imported is deprecated. ActionScript 3.0 will import both classes, but references to the shared
simple class name will result a compile-time error. Such references must be disambiguated by
using a fully qualified class name.

The ActionScript 2.0 behavior of implicit import is also deprecated and will result in a compile-time
error in ActionScript 3.0. To work around such errors, an explicit import directive must be added to
the current package, which imports the referenced class.

16.3 Include directive

Syntax

IncludeDirective

 include [no line break] String

An IncludeDirective may be used where ever a Directive may be used.

include "reusable.as"

Semantics

An IncludeDirective results at compile time in the replacement of the text of the IncludeDirective
with the content of the stream specified by String.

Compatibility

In ActionScript 2.0, the include keyword is spelled #include. This form is deprecated and results in
a compile warning in ActionScript 3.0.

16.4 Use directive

Syntax

UseDirective

 use namespace ListExpressionallowIn

A UseDirective may be used where ever a Directive or AnnotatableDirective may be used. This
includes the top-level of a Program, PackageDefinition and ClassDefinition.

use namespace ns1, ns2

Semantics

A UseDirective causes the specified namespaces to be added to the open namespaces and removed
when the current block scope is exited. Each sub expression of ListExpression must have a compile-
time constant Namespace value.

Compatibility

UseDirective is an extension to ActionScript 2.0.

17 Definitions

17.1 Variable definition

Syntax

VariableDefinitionb

 VariableDefinitionKind VariableBindingListb

VariableDefinitionKind

 var

 const

VariableBindingListb

 VariableBindingb

 VariableBindingListb , VariableBindingb

VariableBindingb

 TypedIdentifierb VariableInitialisationb

VariableInitialisationb

 «empty»

 = VariableInitialiserb

VariableInitialiserb

 AssignmentExpressionb

 AttributeCombination

TypedIdentifierb

 Identifier

 Identifier : TypeExpressionb

TypedIdentifier may be used in a VariableBinding or Parameter definition.

var x : String = "initial String value of var x"
function plusOne(n : Number) { return n + 1 }

Semantics

TypedIdentifer results at compile-time in a variable or parameter that is optionally typed. The
TypeExpression, if given, results at compile-time to a Type value. It is used to specify the set of
values that are compatible with the variable or parameter being declared.

A VariableDefinition may be modified by the following attributes

static adds property to the class object

prototype adds property to the prototype object

private accessible from within the current class

public accessible outside the current package

protected accessible from within an instance of the current class or a derived classes

internal accessible from within the current package

Compatibility

Typed identifier behavior differs between ActionScript 3.0 and ActionScript 2.0 in two ways.
ActionScript 2.0 checks for type compatibility using compile-time types at compile time, while
ActionScript 3.0 checks for type compatibility using runtime types at runtime. The difference can be
seen in the following examples:

var s : String = o
function f(s : String) {}
var o = 10
f(o) // OK in ActionScript 2.0, error in ActionScript 3.0

In ActionScript 2.0, the variable o does not have an explicit compile-time type that can be
compared to the type String of the parameter s in the call to function f, so no error is reported. In
ActionScript 3.0, the value of argument o is compared to the type of the parameter s at runtime,
resulting in an error.

class A {}
class B extends A { var x }
var a : A = new B
a.x = 20 // Error in ActionScript 2.0, OK in ActionScript 3.0 (since instance of B has an x property)

In ActionScript 2.0, the compiler uses A, the declared type of a, to conservatively check for valid
uses of a, excluding completely safe and reasonable uses of a. In ActionScript 3.0, the compiler
uses the type of a to optimize its use, but does not report type errors. It leaves that task to the
runtime.

17.2 Function definition

Syntax

FunctionDefinition

 function FunctionName FunctionCommon

Semantics

A FunctionDefinition introduces a new name and binds that name to a newly created function object
specified by FunctionCommon. The implementation of the function object depends on whether the
function is static or virtual as indicated by its context and attributes.

A FunctionDefinition may be modified by the following attributes

static Adds property to the class object

prototype Adds property to the prototype object

final Adds non-overridable property to each instance

override Overrides a method of the base class

private Accessible from within the current class

public Accessible outside the current package

protected Accessible from within an instance of the current or a derived classes

internal Accessible from within the current package

native Generates a native stub (implementation defined)

Syntax

FunctionName

 Identifier

 get [no line break] Identifier

 set [no line break] Identifier

FunctionName is used inside a FunctionDefinition.

function f() {}
function get x () { return impl.x }
function set x (x) { impl.x = x }

Semantics

FunctionName specifies at compile time the name and kind of function being defined. A name that
includes a get or set modifier specifies that the function being defined is a property accessor.

17.2.1 Function body

Syntax

FunctionCommon

 FunctionSignature

 FunctionSignature Block

Verification

A FunctionCommon that is a FunctionSignature without a Block introduces an abstract method trait.
A FunctionCommon with a FunctionSignature followed by a Block defines a concrete function. The
result of verifying a FunctionCommon node is the addition of a method trait to a set of traits
associated with an object at runtime.

Evaluation

During evaluation, a FunctionCommon node is instantiated and activated. Function instantiation is
when a lexical environment is associated with a function object. This captured environment is used
to activate the function. Activation is when the function is called with a specific receiver (this) and
set of arguments.

17.2.2 Function signature

Syntax

FunctionSignature

 () ResultType

 (Parameters) ResultType

Semantics

The function signature defines the set of traits associated with the activation of a function object.

17.2.3 Parameter list

In the strict dialect, the Arguments assigned to Parameters must have compatible number and
types. In the standard dialect, the handling of arguments is the same as edition 3.

Syntax

Parameters

 «empty»

 NonemptyParameters

NonemptyParameters

 Parameter

 Parameter , NonemptyParameters

 RestParameter

Parameter

 TypedIdentifierallowIn

 TypedIdentifierallowIn = AssignmentExpressionallowIn

RestParameter

 ...

 ... Identifier

Verification

Parameters : empty

Do nothing

Parameters : NonemptyParameters

Verify NonemptyParameters

NonemptyParameters : Parameter

Let frame be the named argument passed into this verifier

Verify Parameter

Let name be the name of Parameter

Let type be the type of Parameter

Call defineSlotTrait(frame,name,type,false)

NonemptyParameters : Parameter , NonemptyParameters

Let frame be the named argument passed into this verifier

Verify Parameter

Verify NonemptyParameters with the argument frame

Let name be the name of Parameter

Let type be the type of Parameter

Call defineSlotTrait(frame,name,type,false)

NonemptyParameters : RestParameter

Verify RestParameter

Parameter : TypedIdentifier

Verify TypedIdentifier

Let name be the name of TypedIdentifier

Let type be the type of TypedIdentifier

Call defineSlotTrait(frame,name,type,undefined,false)

Parameter : TypedIdentifier = AssignmentExpression

Verify TypedIdentifier

Verify AssignmentExpression

Let name be the name of TypedIdentifier

Let type be the type of TypedIdentifier

Let val be the value of AssignmentExpression

If val is equal to none, then throw a VerifyError: must be a compile-time constant

Call defineSlotTrait(frame,name,type,val,false)

RestParameter : …

Do nothing

RestParameter : … Identifier

Let frame be a named argument passed into this verifier

Verify Identifier

Let name be the name of Identifier

Call defineSlotTrait(frame,name,Array,false)

17.2.4 Result type

Syntax

ResultType

 «empty»

 : TypeExpressionallowIn

ResultType may be used in a FunctionSignature.

function f(x) : Number { return x }

Semantics

ResultType guarantees the type of the value returned from a function. It is a verify error if the
return value does not implicitly convert to the ResultType of the function.

Compatibility

The ActionScript 2.0 behavior of checking types only at compile time is more permissive than in
ActionScript 3.0. This will result in new runtime errors in cases such as calling the method shown
above with an argument of type String.

17.3 Class definition

Syntax

ClassDefinition

 Class ClassName Inheritance Block

ClassDefinition may be used where ever an AnnotatableDirective may be used, which includes
wherever a Directive can be used and following a list of attributes, except inside of another
ClassDefinition or InterfaceDefinition.

class A extends B implements C {}
dynamic public final class D {}

17.3.1 Class attributes

Class definitions may be modified by the following attributes:

internal Visible to references inside the current package (default)

public Visible to references everywhere

final Prohibit extension by sub-classing

dynamic Allow the addition of dynamic properties

The default attributes for a class definition are internal, non-dynamic, and non-final.

Semantics

A class definition adds a new class name into the current scope. In the following drawing, the class
name A refers to a class object with the structure shown in the drawing:

class A {}

A class definition causes a class object and prototype instance to be created. The default delegate
of the instance prototype is the Object prototype. The default super class of the class object is the
Object class. Static members are added to the class object as fixed properties, and non-static
members are added to the instance prototype as fixed properties. The internal references (traits,
prototype, constructor, and delegate) between these objects are read-only.

17.3.2 Class name

Syntax

ClassName

 ClassIdentifiers

ClassIdentifiers

 Identifier

 ClassIdentifiers . Identifier

ClassName can be used in ClassDefinition.

class A {}

Semantics

ClassName evaluates at compile time to a type name.

Compatibility

The form ClassIdentifiers : ClassIdentifiers . Identifier is deprecated. It is equivalent to declaring the
class name Identifier in the package ClassIdentifiers.

class P.A {} // deprecated
package P { // preferred
 class A {}
}

17.3.3 Class inheritance

Syntax

Inheritance

 «empty»

 extends TypeExpressionallowIn

 implements TypeExpressionList

 extends TypeExpressionallowIn implements TypeExpressionList

TypeExpressionList

 TypeExpressionallowIn

 TypeExpressionList , TypeExpressionallowIn

Semantics

A ClassDefinition may extend another class definition and implement one or more interfaces. We
say that a class inherits the properties of its base class and the abstract methods of its interfaces.
When a class extends another class, it is inherits the base class's instance properties, but not its
static properties. When a class implements one or more interfaces it is required to define each
inherited interface method.

The TypeExpressions that occur in the extends and implements clauses must be compile-time
constant expressions without forward references.

17.3.4 Class block

Syntax

The body of a class definition is syntactically a Block. The class block must come immediately after
the ClassName or Inheritance constituents, if present. The class block must not contain a
ClassDefinition or InterfaceDefinition.

Semantics

Declarations modified by the static attribute contribute properties to the class object; declarations
without the static attribute contribute properties to the instance traits object. Statements that are
not declarations are evaluated normally when the class object is instantiated.

17.3.4.1 Variables

The following attributes are allowed in variable definitions in a class block:

static Defines a property of the class object

private Visible to references inside the current class

internal Visible to references inside the current package

protected Visible to references inside an instance of the current class and derived
classes

prototype Defines a property of the class prototype object

public Visible to references everywhere

AttributeExpression Namespace value is the qualifier for the name of the definition

The default attributes for variable definitions are non-static and internal.

17.3.4.2 Methods

The following attributes are allowed in function definitions in a class block:

static Defines a property of the class object

final Must not be overridden

override Must redefine an inherited non-final method

native Implementation defined

private Visible to references inside the current class

internal Visible to references inside the current package

protected Visible to references inside instances of the current class and derived
classes

public Visible to references everywhere

AttributeExpression Namespace value is the qualifier for the name of the definition

The default attributes for function definitions in a class are non-static , non-final, non-native and
internal.

Methods that implement interface methods must be instance methods defined with attributes that
include public. Interface methods may be overridden in a derived class as long as the overriding
method also has the public attribute.

A constructor method is a method with the same name as the class it is defined in. It is a syntax
error for the constructor method to have a different namespace attribute than its class.

It is a verifier error for override to appear as an attribute of a class method that does not override
another method.

17.4 Interface definition

Syntax

InterfaceDefinition

 interface ClassName ExtendsList Block

An InterfaceDefinition may be used where ever a Directive or AnnotatableDirective may be used,
which includes wherever a Directive can be used and following a list of attributes, except inside of
another ClassDefinition or InterfaceDefinition.

interface T { function m() }

Semantics

An InterfaceDefinition constrains the structure of any ClassDefinition that implements it. These
constraints are enforced when the ClassDefinition is being compiled. An InterfaceDefinition also
introduces a new type name into the current scope. When evaluated in a context that expects a
type value, a reference to that name is equivalent to the set of types comprising the types of all
instances of all classes that implement the interface.

Compatibility

In ActionScript 2.0, user-defined types only exist at compile time. Therefore, any use of an

In ActionScript 2.0, user-defined types only exist at compile time. Therefore, any use of an
interface name that cannot be enforced at compile time will have no effect on the program. See
descriptions of ResultType and TypeIdentifier.

17.4.1 Interface attributes

Interface definitions may be modified by these attributes

internal Visible to references inside the current package (default)

public Visible to references everywhere

The default modifier for an interface definition is internal.

17.4.2 Interface name

The name of an interface definition has the syntax and semantics of a ClassName (section 16.3.1).

17.4.3 Interface inheritance

Syntax

ExtendsList

 «empty»

 extends TypeExpressionList

An ExtendsList may be used after the ClassName and before Block in an InterfaceDefinition.

interface U extends T { function n() }

Semantics

An ExtendsList specifies the interfaces that include instances of the current InterfaceDefinition in
their value set. It also specifies that the current InterfaceDefinition inherits the structure of each of
the interfaces named in the ExtendsList.

An interface definition must not introduce a method with a name that has the same identifier as an
inherited method.

An interface definition must not inherit itself directly or indirectly.

17.4.4 Interface block

The body of an interface definition is syntactically a Block, but must only contain FunctionDefinitions
with no Block and no attribute.

17.4.4.1 Interface methods

Interface methods must be defined with no attribute. An interface method is given the name that
has its interface as its qualifier and the identifier as the string.

Interface methods have the syntax of a FunctionDefinition without the Block of FunctionCommon.
Class methods that implement interface methods must match the name and signature, including

Class methods that implement interface methods must match the name and signature, including
parameter count, types and result type, exactly. The name of the implementing method must have
a name that is qualified by the public namespace.

17.5 Package definition

Syntax

PackageDefinition

 package PackageNameOpt Block

A PackageDefinition may be used in a Program before any Directive that is not a PackageDefinition
is used.

package p {
 public class A {}
 public interface I {}
}
package q {
 public var x = 10
}
import p.*
import q.f
import y = q.x

class B extends A implements I {}
q.f()
trace(x)

Semantics

A PackageDefinition introduces a new package name into the current scope. A package definition
causes the public members of that package to be qualified by the package name, and the internal
members of that package definition to be qualified by an anonymous namespace that is only
accessible to code inside the package.

The statements of a package body are executed in the global scope of the Program.

Compatibility

PackageDefinition is an extension to ActionScript 2.0. It is added to ActionScript 3.0 to replace the
deprecated form of ClassDefinition that uses a ClassName qualified by a package name.

17.5.1 Package name

Syntax

PackageName

 Identifier

 PackageName . Identifier

17.6 Namespace definition

Syntax

NamespaceDefinition

 namespace NamespaceBinding

NamespaceBinding

 Identifier NamespaceInitialisation

NamespaceInitialisation

 «empty»

 = AssignmentExpressionallowIn

A NamespaceDefinition may be used where ever a Directive or AnnotatableDirective may be used.
This includes the top-level of a Program, PackageDefinition and ClassDefinition.

namespace NS1
namespace NS2 = NS1
namespace NS3 = "http://www.macromedia.com/flash/2005"

Semantics

A NamespaceDefinition introduces a new namespace constant into the current block scope and
assigns to it either an anonymous namespace value, or the value of the AssignmentExpression in
the NamespaceInitialisation implicitly coerced to type Namespace. The value of
NamespaceInitialisation must be a compile-time constant with a value of type String or type
Namespace.

NamespaceDefinitions can be annotated by an access specifier (private, internal, protected or
public), the static modifier inside a ClassDefinition.

17.7 Program definition

Syntax

Program

 Directives

 PackageDefinition Program

 package P {
 function f() {}
}
package Q {
 function f() {}
}
P.f()
Q.f()

18 Errors

18.1 Class errors

The following errors may occur while parsing or verifying a class definition:

Defining a class with the name of another definition in the same scope

Defining a class that extends itself directly or indirectly

Defining a constructor with a namespace attribute that is different than the namespace attribute
of its class

Defining a constructor with a result type

Defining a constructor that calls its super constructor more than once

Defining a constructor that calls its super constructor accessing a non-local property

Introducing a method or variable with the same name as an inherited method or variable

Overriding a variable

Overriding a final method

Overriding a method that is not defined in a base class

Overriding a method with a method that has a different number, types of parameters, or result
type

18.2 Interface errors

The following errors may occur while parsing or verifying an interface definition:

Defining an interface with the name of another definition in the same scope

Defining an interface that extends itself directly or indirectly

Defining an interface with a body that contain a definition or statement other than a function
definition with no block

Defining an interface method with the same identifier as an inherited interface method

Defining an interface method with an attribute

18.3 Package errors

The following list describes package errors:

It is a parser error to define a package inside a package.

It is a parser error to use attributes on a package definition.

It is a parser error to import a package's names into itself

It is a strict error to import the same name more than once into the same package.

It is a strict error to import a package that cannot be found.

It is a strict error to reference a package property that cannot be found in an imported package.

18.4 Namespace errors

The following list describes namespace errors:

It is a verifier error to use an expression that does not have a compile-time constant
namespace value in a use namespace directive.

It is a verifier error to use an attribute expression that is not a compile-time constant
namespace value as a definition attribute.

It is a verifier error to use a user-defined namespace as an attribute except to define a class or
instance property.

19 Native objects

The form and function of the native objects is the same as ECMA-262 edition 3 except that all
prototype properties are also implemented as class methods. Prototype properties that are
functions are implemented as regular methods. Prototype properties that are variables are
implemented as a pair of get and set methods that forward state to the prototype property.

19.1 Global object

Global object

 NaN

 Infinity

 undefined

 parseInt

 parseFloat

 isNaN

 isFinite

 decodeURI

 decodeURIComponent

 encodeURI

 encodeURIComponent

19.2 Object objects

Object object

 Object

 Object.prototype

 Object.prototype.constructor

 Object.prototype.toString

 Object.prototype.toLocaleString

 Object.prototype.valueOf

 Object.prototype.hasOwnProperty

 Object.prototype.isPrototypeOf

 Object.prototype.propertyIsEnumerable

19.3 Function objects

Function object

 Function

 Function.prototype

 Function.prototype.constructor

 Function.prototype.toString

 Function.prototype.apply

 Function.prototype.call

 Function.length

 Function.prototype

19.4 Array objects

Array object

 Array

 Array.prototype

 Array.prototype.constructor

 Array.prototype.toString

 Array.prototype.toLocaleString

 Array.prototype.concat

 Array.prototype.join

 Array.prototype.pop

 Array.prototype.push

 Array.prototype.reverse

 Array.prototype.shift

 Array.prototype.slice

 Array.prototype.sort

 Array.prototype.splice

 Array.prototype.unshift

 Array.[[Put]]

 Array.length

19.5 String objects

String object

 String

 String.prototype

 String.fromCharCode

 String.prototype.constructor

 String.prototype.toString

 String.prototype.valueOf

 String.prototype.charAt

 String.prototype.charCodeAt

 String.prototype.concat

 String.prototype.indexOf

 String.prototype.lastIndexOf

 String.prototype.localeCompare

 String.prototype.match

 String.prototype.replace

 String.prototype.search

 String.prototype.slice

 String.prototype.split

 String.prototype.substring

 String.prototype.toLowerCase

 String.prototype.toLocaleLowerCase

 String.protoype.toUpperCase

 String.protoype.toLocaleUpperCase

 String.[[Value]]

 String.length

19.6 Boolean objects

Boolean object

 Boolean

 Boolean.prototype

 Boolean.prototype.constructor

 Boolean.prototype.toString

 Boolean.prototype.valueOf

19.7 Number objects

Number object

 Number

 Number.prototype

 Number.MAX_VALUE

 Number.MIN_VALUE

 Number.NaN

 Number.NEGATIVE_INFINITY

 Number.POSITIVE_INFINITY

 Number.protoype.constructor

 Number.protoype.toString

 Number.prototype.toLocaleString

 Number.prototype.valueOf

 Number.prototype.toFixed

 Number.prototype.toExponential

 Number.prototype.toPrecision

19.8 Math object

Math object

 Math.E

 Math.LN10

 Math.LN2

 Math.LOG2E

 Math.LOG10E

 Math.PI

 Math.SQRT1_2

 Math.SQRT2

 Math.abs

 Math.acos

 Math.asin

 Math.atan

 Math.atan2

 Math.ceil

 Math.cos

 Math.exp

 Math.floor

 Math.log

 Math.max

 Math.min

 Math.pow

 Math.random

 Math.round

 Math.sin

 Math.sqrt

 Math.tan

19.9 Date objects

Date object

 Date

 Date.protoype

 Date.parse

 Date.UTC

 Date.prototype.constructor

 Date.prototype.toString

 Date.prototype.toDateString

 Date.prototype.toTimeString

 Date.prototype.toLocaleString

 Date.prototype.toLocaleDateString

 Date.prototype.toLocaletimeString

 Date.prototype.valueOf

 Date.prototype.getTime

 Date.prototype.getFullYear

 Date.prototype.getUTCFullYear

 Date.prototype.getMonth

 Date.prototype.getUTCMonth

 Date.prototype.getDate

 Date.prototype.getUTCDate

 Date.prototype.getDay

 Date.prototype.getUTCDay

 Date.prototype.getHours

 Date.prototype.getUTCHours

 Date.prototype.getMinutes

 Date.prototype.getUTCMinutes

 Date.prototype.getSeconds

 Date.prototype.getUTCSeconds

 Date.prototype.getMilliseconds

 Date.prototype.getUTCMilliseconds

 Date.prototype.getTimezoneOffset

 Date.prototype.setTime

 Date.prototype.setMilliseconds

 Date.prototype.setUTCMilliseconds

 Date.prototype.setSeconds

 Date.prototype.setUTCSeconds

 Date.prototype.setMinutes

 Date.prototype.setUTCMinutes

 Date.prototype.setHours

 Date.prototype.setUTCHours

 Date.prototype.setDate

 Date.prototype.setUTCDate

 Date.prototype.setMonth

 Date.prototype.setUTCMonth

 Date.prototype.setFullYear

 Date.prototype.setUTCFullYear

 Date.prototype.toUTCString

19.10 Error objects

Error object

 Error

 Error.prototype

 Error.prototype.constructor

 Error.prototype.name

 Error.prototype.message

 Error.prototype.toString

20 Compatibility with the static profile

The static profile defines a dialect that is a subset of ActionScript 3.0. It allows for the static
interpretation of type names and the reporting of verifier errors ahead-of-time.

21 Compatibility with ECMAScript edition 3

While we have made this edition as compatible as possible with the ECMAScript (ECMA-262) edition
3 language specification, there are certain behaviors for which there is no clear use case and
keeping them as-is would have been placed an unneeded heavy burden on the new features of the
language. In such cases, we have made small and calculated changes to allow the new definition to
be simpler and easier to use.

21.1 this inside of nested function

In ECMA-262 edition 3, when this appears in a nested function, it is bound to the global object if
the function is called lexically, without an explicit receiver object. In ActionScript 3.0, this is bound
to the innermost nested this when the function is called lexically.

21.2 No boxing of primitives

In ECMA-262 edition 3, primitive values (Boolean, Number, String) are boxed in Object values in
various contexts. In ActionScript 3.0, primitives are permanently sealed Objects. Unlike boxed
objects, attempts to dynamically extend a sealed object results in a runtime exception.

21.3 Assignment to const is a runtime exception

In ECMA-262 edition 3, primitive assignment to read-only properties failed silently. In ActionScript
3.0, primitive assignment to read-only properties causes a runtime error to be thrown.

21.4 Class names are const

In ECMA-262 edition 3, constructor functions were writable. In ActionScript 3.0, we implement
these properties with class definitions, which are read only.

21.5 Array arguments object

In ECMA-262 edition 3, the function arguments property is a generic Object. In ActionScript 3.0,
arguments is an Array.

22 Compatibility with E4X

We have made ActionScript 3.0 as compatible as possible with the ECMAScript for XML (E4X)
specification (ECMA-357 edition 2). ActionScript 3.0 diverges from the E4X specification in a small
number of cases due to minor errors in the current edition of the E4X specification.

	ActionScript 3.0 Language Specification
	1 Tutorial introduction
	1.1 Hello world
	1.2 Expressions
	1.3 Statements
	1.4 Variables
	1.5 Functions
	1.6 Classes
	1.7 Interfaces
	1.8 Packages
	1.9 Namespaces
	2 Design perspective
	2.1 Compatibility with existing programs
	2.2 Compatibility with existing object models
	2.3 Controlling the visibility of names
	2.4 Choosing between reliability and flexibility
	3 Phases and dialects of interpretation
	3.1 Parsing
	3.2 Verifying
	3.2.1 Compile time constant expressions
	3.3 Evaluating
	3.4 Strict verification
	3.4.1 Type errors
	3.4.2 Strict errors
	4 Definitions
	4.1 Bound method
	4.2 Class
	4.3 Class method
	4.4 Class variable
	4.5 Delegate
	4.6 Final
	4.7 Function
	4.8 Function Closure
	4.9 Instance
	4.10 Instance method
	4.11 Instance variable
	4.12 Method
	4.13 Object
	4.14 Property
	4.15 Prototype
	4.16 Sealed
	4.17 Slots
	4.18 Trait
	5 Names
	5.1 Definition names
	5.2 Reference names
	5.3 Name lookup
	5.3.1 Object references
	5.3.1.1 Unqualified object references
	Qualified object references

	5.3.2 Lexical references
	6 Types
	6.1 Type operators
	6.1.1 Operator is
	6.1.2 Operator as
	6.2 Type Conversions
	6.3 Type annotations
	6.4 Runtime versus compile time type
	6.5 Untyped versus typed properties
	6.6 Object types
	6.7 Class types
	6.8 Interface types
	6.9 Strict dialect and static types
	7 Variables
	7.1 Variable modifiers
	7.2 Variable types
	8 Functions
	8.1 Function modifiers
	8.2 Function signatures
	8.3 Function objects
	9 Classes
	9.1 Class modifiers
	9.2 Class objects
	9.2.1 Prototypes
	9.2.2 Traits
	9.2.3 Methods
	9.2.4 Slots
	9.2.5 Instances
	9.2.6 Inheritance
	9.2.7 Scopes
	9.3 Class property attributes
	9.3.1 Static attribute
	9.3.2 Prototype attribute
	9.3.3 Access control namespace attributes
	9.3.4 User-defined namespace attributes
	9.4 Class body
	9.5 Class variables
	9.5.1 Static variables
	9.5.2 Instance variables
	9.6 Class methods
	9.6.1 Constructor methods
	9.6.2 Static methods
	9.6.3 Instance methods
	9.6.4 Accessor methods
	9.6.5 Inheriting instance methods
	9.6.5.1 Overriding instance methods
	9.6.5.2 Implementing interface methods

	9.6.6 Bound methods
	10 Interfaces
	10.1 Interface types
	10.2 Interface methods
	10.2.1 Visibility of interface methods
	10.2.2 Inheritance of interface methods
	10.3 Interface example
	11 Packages
	11.1 Package namespace
	11.2 Package members
	11.2.1 Package property attributes
	11.3 Package import
	11.3.1 Single name aliases
	11.4 Unnamed package
	12 Namespaces
	12.1 Namespace values
	12.2 Namespaces as attributes
	12.3 Namespaces as qualifiers
	12.4 Open namespaces
	12.5 Namespace examples
	12.5.1 Access control
	12.5.2 Version control
	12.5.3 Vocabulary control
	13 Lexical Structure
	13.1 Lexical
	13.2 Syntactic
	14 Expressions
	14.1 Identifiers
	Syntax
	Verification
	Evaluation

	14.2 Primary expressions
	Syntax
	Verifition
	Evaluation

	14.3 Reserved namespace expressions
	Syntax
	Verification
	Evaluation

	14.4 Parenthesized expressions
	Syntax
	Verification
	Evaluation

	14.5 Function expression
	Syntax
	Verification
	Evaluation

	14.6 Object initialiser
	Syntax
	Verification
	Evaluation

	14.7 Array initialiser
	Syntax
	Verification
	Evaluation

	14.8 XML initialisers
	Syntax
	Verification
	Evaluation

	14.9 Super expression
	Syntax
	Verification
	Evaluation
	Compatibility

	14.10 Postfix Expressions
	Syntax
	Verification
	Evaluation

	14.11 New expressions
	Syntax
	Verification
	Evaluation

	14.12 Property accessors
	Syntax
	Verification
	Evaluation

	14.13 Query operators
	Syntax
	Verification
	Evaluation

	14.14 Call expressions
	Syntax
	Verification
	Evaluation

	14.15 Unary expressions
	Syntax
	Verification
	Evaluation

	14.16 Binary expressions
	14.16.1 Multiplicative expressions
	Syntax
	Verification
	Evaluation

	14.16.2 Additive expressions
	Syntax
	Verification
	Evaluation

	14.16.3 Shift expressions
	Syntax
	Verification
	Evaluation

	14.16.4 Relational expressions
	Syntax
	Verification
	Evaluation

	14.16.5 Equality expressions
	Syntax
	Verification
	Evaluation

	14.16.6 Bitwise expressions
	Syntax
	Verification
	Evaluation

	14.16.7 Logical expressions
	Syntax
	Verification
	Evaluation

	14.17 Conditional expressions
	Syntax
	Verification
	Evaluation

	14.18 Non-assignment expressions
	Syntax
	Verification
	Evaluation

	14.19 Assignment expressions
	Syntax
	Verification
	Evaluation

	14.20 List expressions
	Syntax
	Verification
	Evaluation

	14.21 Type expressions
	Syntax
	Verification
	Evaluation

	15 Statements
	Syntax

	15.1 Empty statement
	Syntax
	Verification
	Evaluation

	15.2 Expression statement
	Syntax
	Verification
	Evaluation

	15.3 Super statement
	Syntax
	Semantics
	Compatibility

	15.4 Block statement
	Syntax

	15.5 Labeled statement
	Syntax
	Verification
	Evaluation
	Compatibility

	15.6 Conditional statements
	15.6.1 If statement
	Syntax
	Verification
	Evaluation

	15.6.2 Switch statement
	Syntax
	Semantics

	15.7 Iteration statements
	15.7.1 Do-while statement
	Syntax
	Verification
	Evaluation

	15.17.2 While statement
	Syntax
	Verification
	Evaluation

	15.7.3 For statements
	Syntax
	Semantics

	15.8 Continue statement
	Syntax
	Verification
	Evaluation
	Compatibility

	15.9 Break statement
	Syntax
	Verification
	Evaluation
	Compatibility

	15.10 With statement
	Syntax
	Semantics

	15.11 Return statement
	Syntax
	Verification
	Evaluation

	15.12 Throw statement
	Syntax
	Verification
	Evaluation

	15.13 Try statement
	Syntax
	Verification
	Evaluation

	15.14 Default XML namespace statement
	Syntax
	Semantics

	16 Directives
	Syntax

	16.1 Attributes
	Syntax
	Semantics

	16.2 Import directive
	Syntax
	Semantics
	Compatibility

	16.3 Include directive
	Syntax
	Semantics
	Compatibility

	16.4 Use directive
	Syntax
	Semantics
	Compatibility

	17 Definitions
	17.1 Variable definition
	Syntax
	Semantics
	Compatibility

	17.2 Function definition
	Syntax
	Semantics
	Syntax
	Semantics

	17.2.1 Function body
	Syntax
	Verification
	Evaluation

	17.2.2 Function signature
	Syntax
	Semantics

	17.2.3 Parameter list
	Syntax
	Verification

	17.2.4 Result type
	Syntax
	Semantics
	Compatibility

	17.3 Class definition
	Syntax

	17.3.1 Class attributes
	Semantics

	17.3.2 Class name
	Syntax
	Semantics
	Compatibility

	17.3.3 Class inheritance
	Syntax
	Semantics

	17.3.4 Class block
	Syntax
	Semantics
	17.3.4.1 Variables
	17.3.4.2 Methods

	17.4 Interface definition
	Syntax
	Semantics
	Compatibility

	17.4.1 Interface attributes
	17.4.2 Interface name
	17.4.3 Interface inheritance
	Syntax
	Semantics

	17.4.4 Interface block
	17.4.4.1 Interface methods

	17.5 Package definition
	Syntax
	Semantics
	Compatibility

	17.5.1 Package name
	Syntax

	17.6 Namespace definition
	Syntax
	Semantics

	17.7 Program definition
	Syntax

	18 Errors
	18.1 Class errors
	18.2 Interface errors
	18.3 Package errors
	18.4 Namespace errors
	19 Native objects
	19.1 Global object
	19.2 Object objects
	19.3 Function objects
	19.4 Array objects
	19.5 String objects
	19.6 Boolean objects
	19.7 Number objects
	19.8 Math object
	19.9 Date objects
	19.10 Error objects
	20 Compatibility with the static profile
	21 Compatibility with ECMAScript edition 3
	21.1 this inside of nested function
	21.2 No boxing of primitives
	21.3 Assignment to const is a runtime exception
	21.4 Class names are const
	21.5 Array arguments object
	22 Compatibility with E4X

